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Abstract—Many facility location problems are concerned
with minimizing operation and transportation costs by par-
titioning territory into regions of similar size, each of which
is served by a facility. For many optimization problems, the
overall cost can be reduced by means of a partitioning into
balanced subsets, especially in those cases where the cost
associated with a subset is superlinear in its size. In this paper,
we consider the problem of generating a Voronoi partition
of a discrete graph so as to achieve balance conditions on
the region sizes. Through experimentation, we first establish
that the region sizes of randomly-generated graph Voronoi
diagrams vary greatly in practice. We then show how to achieve
a balanced partition of a graph via Voronoi site resampling.
For bounded-degree graphs, where each of the n nodes has
degree at most d, and for an initial randomly-chosen set of s
Voronoi nodes, we prove that, by extending the set of Voronoi
nodes using an algorithm by Thorup and Zwick, each Voronoi
region has size at most 4dn/s+1 nodes, and that the expected
size of the extended set of Voronoi nodes is at most 2s log n.

Keywords-graph Voronoi diagram; balancing; facility loca-
tion; territorial design

I. INTRODUCTION

Imagine a sales manager who aims at partitioning a
country into different regions, the clients within each of
which are to be served by a different sales team. He may
want to both minimize the total travel time for all teams
and to balance the workload among the different regions.
The underlying problem of partitioning territory in order
to efficiently allocate resources appears in many scenarios,
such as sales force deployment [1], [2], ATM placement [3],
political districting [4], [5], school districting [6], and salt
spreading coordination [7]. The corresponding optimization
problems are referred to as facility location [8], [9], [10],
[11], [12] or territorial design [13]. In optimization, the
objective of partitioning is to minimize cost. Whenever
a cost function depends superlinearly on the size of the
regions, balancing the region sizes can contribute to the
minimization of the total cost.

The divide-and-conquer paradigm in algorithm design
constitutes another application of balanced partitioning. In
the context of graphs, divide-and-conquer strategies decom-
pose the graph into components, solve the problem for each
connected component, and combine the local solutions into a
global solution. If the algorithm for each component requires
superlinear time, a highly imbalanced partition would lead
to increased computation cost. For some algorithms, the
overall cost could be dominated by the time required to
process the largest region. In computer science, partitioning

is also relevant for problems involving graph structures
other than planar maps; applications include image process-
ing [14], paging in operating systems [15], and routing in
networks [16].

Finding a perfect partition of a graph is apparently hard:
the problem of deciding whether a graph allows for an exact
partition has been proven to be NP-complete [17, Thm. 1]. If
the vertices are assigned weights, the problem remains NP-
hard, even when restricted to classes of graphs as simple as
series-parallel graphs [18], which often admit polynomial-
time solutions for otherwise hard problems. For the relaxed
problem where a graph is to be partitioned into balanced
regions with sizes ranging between two threshold values,
polynomial-time algorithms are known for (weighted) paths,
trees [19], and graphs with bounded tree-width [18], [20].
For the case of general graphs, one may further relax the
region size constraints so as to compute a partition for which
the size of every region is bounded only from above, but
the number of regions is not too large. The graph Voronoi
diagram [21], [22] would constitute a solution to this relaxed
partitioning problem if the region sizes could be made to
respect the balancing condition.

The analysis of properties of Voronoi diagrams has re-
ceived much attention for spatial settings. Gilbert [23] and
Meijering [24], motivated by the problem of crystal forma-
tion, pioneered the theory of random partitions of space.
The Poisson Voronoi tessellation in Rd is one whose sites
have been generated according to a stationary Poisson point
process [25], which has no dependence on process history
and whose intensity does not change over time. Miles [26],
Ambartzumian [27], and Møller [28] provided some of the
first fundamental results for random Voronoi tessellations.
Other results concerning the area or volume of Voronoi cells
include the following. Mecke and Muche [29], Muche [30],
[31], and Heinrich and Muche [32] analyzed several prop-
erties of random tessellations; among others, they derived
representation formulae for the second moment of the num-
ber of vertices of the ‘typical’ cell. Hilhorst [33], [34],
[35] analyzed the cell area for the planar case. Calka [36]
analyzed the two-dimensional case, giving precise formulae
for the area and perimeter of cells. Rathie [37] gave the exact
distribution of the volume of cells for d ≤ 3. Tanemura [38]
evaluated various properties of cells under a simulation of
the Poisson point process for two and three dimensions.
Brakke derived a general scheme for integrals of probability
density functions. He analyzed statistics for the plane [39],



for the three dimensional space [40], and for higher di-
mensions [41]. He also simulated random Voronoi tessel-
lations of the plane [42], confirming his analytical findings.
Research results are also known for random tessellations
other than the Voronoi diagram. Cowan [43], [44], using
ergodic theory, analyzed mosaic processes and Poisson point
processes. Lautensack and Zuyev [45] evaluated Laguerre
tessellations, which are weighted generalizations of Voronoi
tessellations. To the best of our knowledge, the properties of
random Voronoi diagrams for discrete graphs have not been
investigated previously.

A. Our contribution

We first establish, experimentally, the extent to which the
region sizes of random graph Voronoi diagrams, and the
node degrees of their Delaunay duals, vary in practice for
several different classes of graphs. The graphs under consid-
eration stem from road networks of Europe and the USA,
European public transportation networks, social networks,
protein interactions, citations among scientific publications,
and computer networks. The results reveal that, indeed,
region sizes do vary greatly, and that the balancing problem
for Voronoi diagrams is well-motivated.

In the second part of this paper, we address the problem of
finding balanced Voronoi partitions of graphs. Our approach
is to resample using an algorithm due to Thorup and Zwick
that was originally proposed for bounding routing table
sizes [16]. We prove that, for a graph G = (V,E) with
|V | = n and maximum vertex degree d, Thorup and Zwick’s
original algorithm can, in addition to solving the problem
they intended to solve, also extend a random sample S ⊆ V
of size |S| = s such that the expected size of the extended
sample is at most 2s log n and every Voronoi region contains
at most 4dn

s + 1 nodes.

II. PRELIMINARIES

A graph G = (V,E) consists of a set of vertices V and
edges E ⊆

(
V
2

)
. A weighted graph G = (V,E, ω) consists of

a graph (V,E) together with a weight function ω : E → R+.
We assume positive edge weights. The neighbors of v are
the members of N(v) = {u : (v, u) ∈ E}. The degree
of a node v, deg(v) = |N(v)|, is the number of its
neighbors. In an edge-weighted graph G = (V,E, ω), a
path from s = u0 ∈ V to t = uh ∈ V is a sequence
of nodes (u0, u1, . . . , uh) for which (ui, ui+1) ∈ E for all
i ∈ {0, 1, . . . h−1}. The length of a path P is the sum of its
edge weights `(P ) :=

∑h−1
i=0 ω(ui, ui+1). A subpath P ′ of a

path P is a subsequence of its nodes P ′ = (ui, ui+1, . . . uj),
0 ≤ i < j ≤ h. A simple path is a path without repeated
vertices. Let PG(u, v) denote the set of paths from u to
v in a graph G. The distance d(u, v) between two nodes
u, v is the length of a shortest path from u to v; that is,
d(u, v) = minP∈P(u,v) `(P ).

The classical Voronoi diagram is a distance-based decom-
position of a metric space relative to a discrete set, the
Voronoi sites. Given a set of points (the Voronoi sites),
the Voronoi decomposition leads to regions (the Voronoi
regions) consisting of all points that are closest to a specific
site. Mehlhorn [21] and Erwig [22] proposed an analogous
decomposition, the Graph Voronoi Diagram, for undirected
and directed graphs respectively.

Definition 1 (Graph Voronoi Diagram [21], [22]). In a
graph G = (V,E, ω), the Voronoi diagram for a set of
nodes S = {v1, . . . , vs} ⊆ V is a disjoint partition
Vor(G,S) := {V1, . . . , Vs} of V such that for each node
u ∈ Vi, d(u, vi) ≤ d(u, vj) for all j ∈ {1, . . . , s}.

The Vi are called Voronoi regions. The graph Voronoi
diagram is not necessarily unique, as a node u may have
the same distance to more than one Voronoi node.

Analogously to the Delaunay triangulation dual for clas-
sical Voronoi diagrams of point sets, one can define the
Voronoi dual for graphs.

Definition 2. Let G = (V,E, ω) be a weighted graph and
VorG,S its Voronoi diagram. The Voronoi dual is the graph
G∗ = (S, E∗, ω∗) with edge set E∗ := {(vi, vj) : vi, vj ∈
S and ∃u ∈ Vi ∧ ∃w ∈ Vj : (u, w) ∈ E}, and edge weights
ω∗(vi, vj) := min

u∈Vi,w∈Vj

(u,w)∈E

{d(vi, u) + ω(u, w) + d(w, vj)}.

Figure 1 illustrates two graph Voronoi diagrams for the
same (planar) graph but with different edge weights. Al-
though the classical Voronoi dual of a non-degenerate set
of points in the plane is always a triangulation, the graph
Voronoi dual is not necessarily a triangulation, even for
planar graphs. For example, a graph Voronoi dual may have
nodes whose removal would disconnect the graph.

Erwig [22, Thm. 2] shows that the graph Voronoi diagram
can be constructed via a single Dijkstra search in time
O(m + n · log n). Honiden et al. [46] provide an example
of how the construction of a Voronoi diagram [22, sec. 3.1]
may be adapted to compute a graph Voronoi dual — that is,
to also compute EG∗ and ωG∗ .

III. VARIATION IN VORONOI REGION SIZES

In order to show the extent of the variance of region
sizes in randomly-generated graph Voronoi diagrams, we
applied the following generation algorithm to the data sets
described below. Given a graph G = (V,E) with |V | = n,
the algorithm generates a set of Voronoi sites S ⊆ V by
selecting each node of V independently at random with
probability p = d

√
ne/n, and computes the graph Voronoi

dual of S as per Definition 2. We report the mean values
and standard deviations of the node degrees in the Voronoi
dual, as well as the mean values and standard deviations
of the number of Voronoi region nodes, produced over 100
repetitions of the algorithm.



A. Data sets

For the experimentation, we make use of several graphs
derived from five transportation network data sets. Two
of the graphs represent road networks: one from Western
Europe, made available for scientific use by the company
PTV AG, and the other from the USA, a data set figuring in
the 9th DIMACS implementation challenge [47]. For some
road network graphs, there are two different edge weight-
ings, one representing geographical distances (denoted by
d in the names of the graphs listed in the result tables)
and the other representing driving time (denoted by t). The
other three graphs represent European public transporta-
tion networks used previously for experiments conducted
in [48], [49]: one of the three represent long-distance railway
connections, and the other two represent the bus networks
of two companies, the Rhein-Main-Verkehrsverbund RMV,
and the Verkehrsverbund Berlin Brandenburg VBB. For
the experimentation, all graphs derived from transportation
networks were converted into their undirected forms.

We also conduct experiments for a number of instances
of power-law graphs, also known as scale-free networks.
Power-law graphs generally obey the power-law distribution,
which assumes that every node has degree x with prob-
ability proportional to x−τ (Pr[deg(v) > x] = x−τ+1).
The power-law graph model seems to apply to many real-
world structures [50], [51] such as social networks, the
web graph, protein interaction networks, semantic networks,
and others. For our experimentation, power-law graphs were
generated from the following databases: a co-authorship
graph derived from the DBLP computer science bibliogra-
phy [52], in which two authors are connected by an edge
if they share at least one joint publication (dblp20080824);
a citation graph used as a dataset in the KDD Cup 2003
competition [53], taken from the high-energy physics re-
search literature (hep-th-cite); a graph derived from the
CAIDA [54] database of the router-level topology of a
portion of the Internet (itdk0304); four graphs based on
two random topologies generated using BRITE [55], two
for each of the Barabási [56] and Waxman [57] mod-
els (ASBarabasi, ASWaxman, RTBarabasi, RTWaxman); a
graph of experimentally-determined protein-protein interac-
tions taken from the Database of Interacting Proteins [58]
(dip20090126); a graph of physical and genetic interactions
from the freely-accessible database BioGRID [59]. For each
data set, the power-law coefficient τ was estimated using the
maximum-likelihood method [60].

B. Results

The results of the experimentation are listed in Tables I,
II, and III. The columns from left to right list the name
of the graphs considered, their numbers of nodes and edges,
and the means and standard deviations of their node degrees.
The next columns show the means and standard deviations
of two quantities taken over 100 random graph Voronoi

diagram generations: the Voronoi dual node degrees, and the
Voronoi region sizes. For the latter, the standard deviation is
normalized by dividing by the mean number of nodes of the
Voronoi regions, and the mean is consequently shown as 1.

The results for the US and European road networks are
presented in Table I. The standard deviation of Voronoi
region sizes is fairly consistent across all graphs studied,
at approximately 0.7 of the mean value. Note that for those
road networks with edges weighted by distance, the standard
deviation is consistently smaller than for those graphs with
edges weighted by driving times. This is perhaps due to the
fact that the distance-weighted graph is embeddable in the
Euclidean plane, whereas large time-weighted graphs are (in
general) not embeddable.

For the power-law graphs (Table II) and the railway
networks (Table III), the variation among Voronoi region
sizes is substantially larger, although the variation does not
appear to be correlated with the power-law coefficient τ .

IV. BALANCING THE REGION SIZES BY RESAMPLING

In this section, we analyze the resampling algorithm due
to Thorup and Zwick [16, Algo. 2]. The original application
of their algorithm is in the limitation of the routing table
sizes required for a compact routing scheme, also introduced
in [16].

A. Thorup and Zwick resampling

Recall that for a sample S ⊆ V , the Voronoi diagram
is a partition of the node set into Voronoi regions Vi such
that for each node u ∈ Vi, d(u, vi) ≤ d(u, vj) for all
j ∈ {1, . . . , k}. Ties in distances may be broken arbitrarily
(but consistently). Using the notation of Thorup and Zwick,
let the method sample(W, s) return a random subset of
W by selecting each node independently at random with
probability min{1, s/|W |}. If s ≥ |W |, the entire set W
is returned. The rebalancing algorithm is stated below. The
description requires the determination of the cluster CS(w)
of a node w ∈ V , defined by Thorup and Zwick to be the
set of nodes that would lie in the Voronoi region of w if it
were to be inserted into the set of Voronoi nodes S. Their
interest in bounding the size of CS(w) is motivated by the
need to store references to these nodes in the routing table
of w in their compact routing strategy.

Algorithm 1 (center(G, s) [16, Algo. 2]).
• S := ∅

W := V
• while W 6= ∅

– S := S ∪ sample(W, s)
– for all w ∈ V : CS(w) := {v ∈ V : d(w, v) <

d(S, v)}
– W := {w ∈ V : |CS(w)| > 4n

s }
• return S



Graph |V | |E| Degree Vor. Dual Degree Vor. Region Size
cze 23094 53412 2.631±0.953 4.432±1.712 1±0.759
lux 30047 70189 2.439±0.896 4.756±1.729 1±0.739
irl 32868 71655 2.349±0.966 4.688±1.804 1±0.770
prt 159945 372129 2.563±0.889 5.040±1.794 1±0.715
fin 458231 1019975 2.209±1.009 4.600±1.642 1±0.700
bel 458403 1092727 2.538±0.906 5.487±1.658 1±0.649
dnk 469110 1074929 2.324±0.944 4.791±1.721 1±0.727
che 585514 1343980 2.355±0.917 4.689±1.738 1±0.746
esp 695399 1546253 2.685±0.868 4.965±1.786 1±0.830
aut 722512 1667569 2.350±0.932 4.780±1.709 1±0.712
nld 849537 2033788 2.520±0.899 5.077±1.725 1±0.740
nor 898196 1946881 2.169±1.008 3.856±1.498 1±0.835
swe 1546705 3579738 2.253±0.992 4.886±1.664 1±0.708
ita 2077709 4824125 2.493±0.955 5.122±1.806 1±0.761
gbr 2142853 4896816 2.406±0.935 5.269±1.738 1±0.719
fra 2793047 6558521 2.526±0.886 5.508±1.738 1±0.722
deu 4047577 9572939 2.425±0.929 5.493±1.580 1±0.640
d.eur 18010173 42560279 2.467±0.942 5.347±1.681 1±0.676
t.eur 18010173 42560279 2.467±0.942 5.440±2.261 1±0.856
d.NY 264346 733846 2.762±0.979 4.886±1.577 1±0.655
t.NY 264346 733846 2.762±0.979 4.965±1.881 1±0.708
d.BAY 321270 800172 2.474±0.987 4.568±1.562 1±0.748
t.BAY 321270 800172 2.474±0.987 4.628±1.837 1±0.796
d.COL 435666 1057066 2.393±0.915 4.573±1.643 1±0.768
t.COL 435666 1057066 2.393±0.915 4.614±1.894 1±0.861
d.FLA 1070376 2712798 2.511±0.955 4.690±1.561 1±0.723
t.FLA 1070376 2712798 2.511±0.955 4.778±1.878 1±0.808
d.NW 1207945 2840208 2.335±0.938 4.742±1.635 1±0.735
t.NW 1207945 2840208 2.335±0.938 4.789±1.882 1±0.825
d.NE 1524453 3897636 2.537±0.951 5.155±1.601 1±0.657
t.NE 1524453 3897636 2.537±0.951 5.217±1.916 1±0.732
d.CAL 1890815 4657742 2.449±0.941 4.763±1.563 1±0.728
t.CAL 1890815 4657742 2.449±0.941 4.817±1.847 1±0.814
d.LKS 2758119 6885658 2.464±0.927 5.286±1.588 1±0.650
t.LKS 2758119 6885658 2.464±0.927 5.329±1.863 1±0.742
d.E 3598623 8778114 2.420±0.942 5.132±1.608 1±0.662
t.E 3598623 8778114 2.420±0.942 5.199±1.908 1±0.753
d.W 6262104 15248146 2.414±0.921 4.936±1.572 1±0.712
t.W 6262104 15248146 2.414±0.921 4.985±1.889 1±0.818
d.CTR 14081816 34292496 2.405±0.929 5.427±1.555 1±0.646
t.CTR 14081816 34292496 2.405±0.929 5.463±1.892 1±0.740
1.USA 23947347 58333344 2.410±0.929 5.306±1.760 1±0.640
d.USA 23947347 58333344 2.410±0.929 5.334±1.569 1±0.652
t.USA 23947347 58333344 2.410±0.929 5.381±1.889 1±0.747

Table I
VARIATION OF REGION SIZE AND DISTRIBUTION FOR 30 ROAD NETWORKS OF EUROPE AND THE USA.

Graph τ̂ [60] |V | |E| degree Vor. Dual Degree Vor. Region Size
BIOGRID 2.551 4039 43854 10.855±13.435 15.285± 10.253 1±1.275
ASBarabasi 2.893 10000 39994 3.999± 6.529 44.120± 23.774 1±1.831
ASWaxman 2.806 10000 40000 4.000± 2.486 60.273± 20.672 1±1.072
RTBarabasi 2.892 10000 39994 3.999± 6.159 45.215± 23.566 1±1.559
RTWaxman 2.806 10000 40000 4.000± 2.479 60.460± 20.275 1±1.047
dip20090126 3.079 19928 82406 4.135± 5.842 34.335± 17.862 1±1.456
hep-th-cite 2.385 27400 705084 25.732±45.558 69.836± 37.055 1±1.841
itdk0304 2.820 190914 1215220 6.365±14.181 35.737± 48.355 1±3.456
dblp20080824 2.686 511163 3742140 7.321±11.785 143.868±124.423 1±2.412

Table II
VARIATION OF REGION SIZE AND DISTRIBUTION FOR NINE POWER-LAW GRAPHS, TOGETHER WITH THE ESTIMATED POWER-LAW COEFFICIENT τ̂ .



Theorem 1 (Thorup and Zwick [16, Thm. 3.1]). The ex-
pected size of the set S returned by Algorithm center(G, s)
is at most 2s log n. For every w ∈ V , the cluster size is
bounded by |CS(w)| ≤ 4n

s .

Note that if w also happens to be a member of S, the
condition ∀v : d(w, v) ≥ d(S, v) implies that its cluster
CS(w) is empty.

The bound on cluster size stated in the theorem does not
directly apply to the region sizes themselves: for a node
vi ∈ S it may happen that its Voronoi region Vi has size
|Vi| > 4n

s even though |CS(w)| ≤ 4n
s may hold for all

w ∈ V . However, we prove in the following that the union
of all sets CS(v′) over all neighbors v′ of vi does in fact
contain all nodes of Vi.

Theorem 2. For a graph G = (V,E) with |V | = n, positive
edge weights, and maximum degree d, the expected size of
the set S returned by Algorithm center(G, s) is at most
2s log n. For every vi ∈ S with Voronoi region Vi, we then
have |Vi| ≤ 4dn

s + 1. Also, for every w ∈ V it holds that
|CS(w)| ≤ 4n

s .

Proof: Except for the bounds on the region sizes |Vi|,
the remainder of the claims follow directly from Theorem 1.
It suffices to prove that no region contains more than 4dn

s +1
nodes. Recall that for each node u ∈ Vi \ {vi}, we have
d(u, vi) ≤ d(u, vj) for all j ∈ {1, . . . , s}. Every shortest
path from vi to u ∈ Vi must include at least one of the
neighbors of vi (call it v′). As the edge weights are positive,
the length of the subpath from v′ to u is strictly less than
the length of any shortest path from v′ to u. Therefore, u ∈
CS(v′), and thus every u ∈ Vi \{vi} is contained in CS(v′)
for some choice of neighbor v′ of vi.

Vi ⊆ vi ∪
⋃

v∈N(vi)

CS(v)

As |CS(w)| ≤ 4n
s for all w ∈ V , we obtain

|Vi| ≤ 1 + |N(vi)| ·
4n

s
≤ 1 +

4dn

s

In general, for graphs with unbounded degree, Algo-
rithm 1 cannot generate a balanced partition where all region
sizes are bounded by O(n

s ). As a counter-example, consider
an n-node star graph with distinct edge weights. If the center
node is selected as a Voronoi site (which happens with
probability s

n ), its Voronoi region includes all nodes except
S. Thus, its region size can only be reduced by adding nodes
to S. Reducing its region size down to O(n

s ) requires the
addition of n−s−O(n

s ) Voronoi nodes. This extended set of
Voronoi nodes may be much larger than the desired bound of
2s log n. If the center node is not selected as a Voronoi site,
the Voronoi node closest to the center will have the largest
Voronoi region, which would include all nodes of V \ S.

Thorup and Zwick bound the run time of their algorithm
as follows:

Theorem 3 (Thorup and Zwick [16, proof of Thm. 3.1]).
The expected run time of Algorithm center(G, s) is at most
O(mn

s log n).

V. EXPERIMENTS

For the experiments, the resampling algorithm is given
an edge-weighted input graph G = (V,E, ω) with |V | = n
and target sample size s = d

√
ne. As test data, we use the

same graphs as in Section III. For each graph, we report the
mean values and standard deviations of the Voronoi dual
node degrees, and the means and standard deviations of the
Voronoi region size. Here, the values for the region size
are normalized by dividing by the expected size of Voronoi
regions without resampling; that is, by n

s = n
d
√

ne = 1
p .

For example, a reported value of 0.5± 0.25 would indicate
a mean region size of n

2s (instead of n
s ), with a standard

deviation of n
4s .

The experimental results, shown in Tables IV, V, and VI,
indicate an effective reduction in the variance of the Voronoi
region sizes. Throughout our experimentation, we observed
that only a few rounds of resampling were required for all re-
gion sizes to fall below the bound 4n

s . For the road networks
(Table IV), the number of Voronoi sites roughly doubled
due to the resampling, and for the public transportation
networks (Table VI), the number of Voronoi sites roughly
tripled. For the power-law graphs, with unbounded degrees,
the resampling expanded the number of Voronoi nodes by a
factor of up to 10 to 20 times (note that 2 log n ≥ 20 for all
the graphs evaluated). As expected, the variance for these
power-law graphs could be bounded only by introducing a
substantial number of additional Voronoi nodes.

VI. CONCLUSION

Regions of random graph Voronoi diagrams vary greatly
in size. For graphs with bounded degree, the resampling al-
gorithm by Thorup and Zwick can be used to obtain a graph
Voronoi diagram with bounded region sizes. A number of
practical improvements to the algorithm seem possible. The
original algorithm actually enforces stronger conditions than
what is necessary for a balanced partition. The resampling
algorithm repeatedly computes the size |CS(w)| for every
node w. This is not necessary, since, for a balanced partition,
the size of CS(w) does not have to be bounded for all w.
Instead of simply reiterating the resampling process, it may
be possible to restrict the resampling and the computation
of the sets CS(w) to only those nodes w contained in large
Voronoi regions. In addition, instead of resampling among
nodes w with large sets CS(w), a heuristic algorithm could
resample among nodes in large Voronoi regions without the
explicit (and costly) computation of their clusters CS(w).



Graph |V | |E| Degree Vor. Dual Degree Vor. Region Size
longRail 1215750 1823609 3.000±0.006 16.984± 9.711 1±1.251
RMV 2277812 3416597 3.000±0.010 15.379± 9.767 1±1.209
VBB 2599953 3899807 3.000±0.010 18.770±11.978 1±1.035

Table III
VARIATION OF REGION SIZE AND DISTRIBUTION FOR 3 EUROPEAN PUBLIC TRANSPORTATION GRAPHS.

Graph |V | |E| Degree Vor. Dual Degree Vor. Region Size
cze 23094 53412 2.631±0.953 4.242±1.702 0.528±0.434
lux 30047 70189 2.439±0.896 4.581±1.696 0.568±0.440
irl 32868 71655 2.349±0.966 4.553±1.764 0.593±0.444
prt 159945 372129 2.563±0.889 4.970±1.779 0.578±0.420
fin 458231 1019975 2.209±1.009 4.387±1.646 0.524±0.427
bel 458403 1092727 2.538±0.906 5.416±1.719 0.578±0.407
dnk 469110 1074929 2.324±0.944 4.806±1.754 0.570±0.431
che 585514 1343980 2.355±0.917 4.624±1.763 0.573±0.431
esp 695399 1546253 2.685±0.868 4.921±1.767 0.545±0.426
aut 722512 1667569 2.350±0.932 4.695±1.737 0.565±0.433
nld 849537 2033788 2.520±0.899 5.031±1.772 0.553±0.429
nor 898196 1946881 2.169±1.008 3.703±1.468 0.538±0.446
swe 1546705 3579738 2.253±0.992 4.748±1.693 0.566±0.433
ita 2077709 4824125 2.493±0.955 5.050±1.819 0.572±0.442
gbr 2142853 4896816 2.406±0.935 5.219±1.743 0.592±0.428
fra 2793047 6558521 2.526±0.886 5.498±1.759 0.572±0.421
deu 4047577 9572939 2.425±0.929 5.426±1.623 0.626±0.413
d.eur 18010173 42560279 2.467±0.942 5.331±1.699 0.608±0.420
t.eur 18010173 42560279 2.467±0.942 5.432±2.390 0.516±0.442
d.NY 264346 733846 2.762±0.979 4.859±1.604 0.617±0.421
t.NY 264346 733846 2.762±0.979 4.924±1.866 0.583±0.416
d.BAY 321270 800172 2.474±0.987 4.538±1.597 0.559±0.431
t.BAY 321270 800172 2.474±0.987 4.585±1.873 0.533±0.423
d.COL 435666 1057066 2.393±0.915 4.472±1.650 0.559±0.431
t.COL 435666 1057066 2.393±0.915 4.510±1.854 0.527±0.429
d.FLA 1070376 2712798 2.511±0.955 4.626±1.598 0.558±0.423
t.FLA 1070376 2712798 2.511±0.955 4.712±1.902 0.523±0.421
d.NW 1207945 2840208 2.335±0.938 4.643±1.659 0.550±0.425
t.NW 1207945 2840208 2.335±0.938 4.679±1.854 0.514±0.418
d.NE 1524453 3897636 2.537±0.951 5.099±1.644 0.573±0.419
t.NE 1524453 3897636 2.537±0.951 5.164±1.949 0.541±0.419
d.CAL 1890815 4657742 2.449±0.941 4.705±1.610 0.540±0.428
t.CAL 1890815 4657742 2.449±0.941 4.746±1.853 0.507±0.421
d.LKS 2758119 6885658 2.464±0.927 5.259±1.637 0.591±0.426
t.LKS 2758119 6885658 2.464±0.927 5.298±1.920 0.547±0.423
d.E 3598623 8778114 2.420±0.942 5.083±1.656 0.578±0.424
t.E 3598623 8778114 2.420±0.942 5.141±1.953 0.531±0.421
d.W 6262104 15248146 2.414±0.921 4.857±1.623 0.557±0.428
t.W 6262104 15248146 2.414±0.921 4.885±1.889 0.510±0.427
d.CTR 14081816 34292496 2.405±0.929 5.228±1.730 0.487±0.434
t.CTR 14081816 34292496 2.405±0.929 5.225±2.036 0.446±0.428
1.USA 23947347 58333344 2.410±0.929 5.245±1.832 0.583±0.421
d.USA 23947347 58333344 2.410±0.929 5.263±1.629 0.580±0.425
t.USA 23947347 58333344 2.410±0.929 5.297±1.957 0.533±0.427

Table IV
AFTER RESAMPLING: VARIATION OF REGION SIZE AND DISTRIBUTION FOR 30 ROAD NETWORKS OF EUROPE AND THE USA.
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Figure 1. Two graph Voronoi diagrams for the same planar graph but with different edge weights. Voronoi nodes are black and the remaining nodes are
white. Even though the graphs are structurally equivalent, the corresponding graph Voronoi diagrams are not.

Graph |V | |E| Degree Vor. Dual Degree Vor. Region Size
BIOGRID 4039 43854 10.855±13.435 12.762±11.539 0.294±0.333
ASBarabasi 10000 39994 3.999± 6.529 27.571±34.150 0.156±0.206
ASWaxman 10000 40000 4.000± 2.486 46.792±33.707 0.286±0.240
RTBarabasi 10000 39994 3.999± 6.159 30.060±34.584 0.173±0.217
RTWaxman 10000 40000 4.000± 2.479 47.294±34.006 0.292±0.246
dip20090126 19928 82406 4.135± 5.842 36.522±36.825 0.174±0.248
hep-th-cite 27400 705084 25.732±45.558 80.889±94.295 0.114±0.168
itdk0304 190914 1215220 6.365±14.181 19.951±59.507 0.050±0.115
dblp20080824 511163 3742140 7.321±11.785 42.944±93.010 0.047±0.100

Table V
AFTER RESAMPLING: VARIATION OF REGION SIZE AND DISTRIBUTION FOR NINE POWER-LAW GRAPHS.

Graph |V | |E| Degree Vor. Dual Degree Vor. Region Size
RMV 2277812 3416597 3.000±0.013 13.156± 8.671 0.307±0.387
VBB 2599953 3899807 3.000±0.014 13.568±10.633 0.289±0.382
LongDistance 1215750 1823609 3.000±0.007 14.284± 8.659 0.326±0.360

Table VI
AFTER RESAMPLING: VARIATION OF REGION SIZE AND DISTRIBUTION FOR 3 EUROPEAN PUBLIC TRANSPORTATION GRAPHS.


