
A Note on Coloring Sparse Random Graphs

Christian Sommer
sommer@nii.ac.jp

October 7, 2008

Abstract

Coja-Oghlan and Taraz (2004) presented a graph coloring algorithm
that has expected linear running time for random graphs with edge prob-
ability p satisfying np ≤ 1.01. In this work, we develop their analysis by
exploiting generating function techniques. We show that, in fact, their al-
gorithm colors Gn,p with the minimal number of colors and has expected
linear running time, provided that np ≤ 1.33.
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1 Introduction

Deciding whether the chromatic number of a graph G is smaller than a given
value ` is an NP-complete problem. Furthermore, Feige and Kilian [FK98]
showed that, unless ZPP = NP, there is no polynomial-time algorithm that
colors an input graph on n vertices, and has approximation ratio less than n1−ε,
for all ε > 0. Considering these worst-case results, a natural question arises: is
there an algorithm that performs well on random instances?

In this work our focus is on the well-known and well-studied binomial model
of random graphs [Gil59, ER60]. In this model, an edge is included in the
resulting graph with probability p, independently of the presence or absence of
other edges. We shall denote by Gn,p a random graph drawn according to this
distribution. Karp [Kar76] asked the following question: Is there an algorithm
that has expected polynomial running time for Gn,p and always finds an optimal
coloring?

Coja-Oghlan and Taraz [COT04] affirmatively answered this question, pro-
vided that p is not too large, namely np ≤ 1.01. However, they remarked that
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their analysis was not tight, and asked whether their result could hold for larger
values of p. For np ≥ 3.35, a random graph Gn,p has a 3-core of linear size
almost surely [PSW96], causing the algorithm of Coja-Oghlan and Taraz to run
in exponential time only. In this work, we develop their analysis by exploiting
generating function techniques, and show the following result.

Theorem 1. There exists an algorithm that colors Gn,p with the minimal num-
ber of colors and has expected linear running time, provided that np ≤ 1.33.

Lemma 1, which bounds the number of graphs with minimum degree k on
ν nodes and µ edges, contributes the main improvement of [COT04] and is also
of independent interest.

1.1 Algorithm

The algorithm of Beigel and Eppstein [BE05] decides whether a graph is 3-
colorable in time O(1.3289n). Define τ3 := 1.329. The algorithm of Lawler
[Law76] determines the chromatic number of a graph in time O((1 + 3

√
3)n).

Define τ4 := 2.443.
The k-core of a graph G = (V,E) is the maximum subgraph with minimum

degree k.
The algorithm of Coja-Oghlan and Taraz [COT04] optimally colors a graph

as follows: the 3-core is built by repeatedly removing vertices with deg(v) < 3
and putting them on a stack. Next, the algorithm of Beigel and Eppstein [BE05]
is applied on the 3-core and if it is 3-colorable, the core is colored. Otherwise,
it builds the 4-core by further removing vertices with deg(v) < 4 and putting
them on the stack. Then, the algorithm optimally colors the core using Lawler’s
algorithm [Law76]. Finally, the vertices from the stack are added one by one
to the graph again and they are assigned the smallest color available. For an
exposition of the algorithm we refer to [COT04].

2 Proof

Define C(k; ν, µ) to be the set of graphs having a k-core of size ν with µ edges and
G(k; ν, µ) to be the set of graphs with ν nodes, µ edges and minimal degree k.
Every G ∈ C(k; ν, µ) has a subgraph from G(k; ν, µ).

The expected running time (up to a constant factor and linear processing
time to build the core) is, for all ν, µ, at most the probability that the graph has
a k-core with ν vertices and µ edges multiplied with the exponential running
time needed for the core, i.e.,

∑
k∈{3,4}

n∑
ν=k

(ν
2)∑

µ= k
2 ν

Pr[Gn,p ∈ C(k; ν, µ)] · (τk)ν .
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The probability that Gn,p, where p = c
n , has a k-core of size ν with µ edges is

bounded as follows:

Pr[Gn,p ∈ C(k; ν, µ)] ≤
(

n

ν

)
·
( c

n

)µ

· |G(k; ν, µ)|

≤ 2h(ν/n)·n ·
( c

n

)µ

· |G(k; ν, µ)|,

where h(p) := −p log2 p− (1− p) log2(1− p) denotes the binary entropy.
We split the proof into two cases for µ = k

2ν + λ. Set η = 0.7.
Case I: (Many Edges, µ ≥ k

2ν + ην): The number of graphs with a core
of size ν and at least µ edges |G(k; ν, µ)| is bounded by the number of ways to
choose µ edges among the

(
ν
2

)
pairs of nodes in the core.

|G(k; ν, µ)| ≤
((ν

2

)
µ

)
≤
(

eν2

2µ

)µ

It remains to show that

2h(ν/n)·n ·
( c

n

)µ

· |G(k; ν, µ)| ≤ (τk)−ν .

We write ν = xνn and λ = xλxνn. (xν ∈ (0, 1], xλ ≥ η)

2h(ν/n)n · (τk)ν ·
(

eν2c

2µn

)µ

< 1

⇔ 2h(xν)n · (τk)xνn ·

(
e(xνn)2c

2(k
2xνn + xλxνn)n

) k
2 xνn+xλxνn

< 1

⇐ 2h(xν) · (τk)xν ·
(

exνc

k + 2η

)xν( k
2 +η)

< 1

The condition above holds for all xν ∈ (0, 1].

Case II: (Few Edges, µ < k
2ν + ην): Let e(ξ, k) denote the Euler series

starting at k, i.e., e(ξ, k) := eξ −
∑k−1

i=0 ξi/i! =
∑

i≥k ξi/i!.
We bound the number of graphs with minimal degree k. This lemma is also

of independent interest.

Lemma 1 (Number of graphs with minimal degree k). The number of graphs
with minimal degree k on ν vertices and µ edges is bounded as follows:
There is a constant C > 0 such that for any ξ > 0

|G(k; ν, µ)| ≤ C ·
(

2µ

ξ2e

)µ

· e(ξ, k)ν .
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Proof. Given a degree sequence ~d = (d1, d2, . . . dν) with
∑ν

i=1 di = 2µ, according
to Bollobás’ configuration model [Bol80], there are at most

(2µ)!
µ! · 2µ ·

∏ν
i=1 di!

≤ C ·
(

2µ

e

)µ

·
ν∏

i=1

1
di!

labelled graphs on ν vertices and µ edges such that the i-th vertex has degree
di. Define D(k; ν, µ) to be the set of degree sequences of ν nodes with µ edges
and all degrees at least k, i.e.,

D(k; ν, µ) := {~d = (d1, d2, . . . dν) :
ν∑

i=1

di = 2µ,∀j : dj ≥ k}.

To obtain the bound, we sum over all possible degree sequences, i.e., all
~d ∈ D(k; ν, µ). The next step, essentially, performs the difference. Coja-Oghlan
and Taraz [COT04] bound the sum by ( 2

k! )
ν · ( 2

k+1 )2µ−νk. We give a bound
utilising generating functions. For f(ξ) =

∑
i≥0

aiξ
i let [ξi]f(ξ) := ai. We claim

that ∑
~d∈D(k;ν,µ)

ν∏
i=1

1
di!

= [ξ2µ]e(ξ, k)ν .

Proof is by induction over ν. Base case (ν = 1):

∑
~d∈D(k;1,µ)

1∏
i=1

1
di!

=
1

(2µ)!
= [ξ2µ]e(ξ, k).

Inductive step (ν − 1 → ν):

[ξ2µ]e(ξ, k)ν =
2µ∑

δ≥k

[ξδ]e(ξ, k) · [ξ2µ−δ]e(ξ, k)ν−1

=
2µ∑

δ≥k

1
δ!
·

∑
~v∈D(k;ν−1,µ−δ/2)

ν−1∏
i=1

1
di!

=
∑

~v∈D(k;ν,µ)

ν∏
i=1

1
di!

.

Furthermore, for f(ξ) =
∑
i≥0

aiξ
i with ai ≥ 0

f(ξ)
ξ2µ

=
∑
i≥0

aiξ
i

ξ2µ
≥ a2µ = [ξ2µ]f(ξ).

Therefore, since ai ≥ 0, for any ξ > 0,

[ξ2µ]e(ξ, k)ν ≤ e(ξ, k)ν

ξ2µ
.
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Using the bound from Lemma 1 we can now continue the proof of the main
theorem, case II (few edges). For any ξ > 0, |G(k; ν, µ)| is bounded as follows.

|G(k; ν, µ)| ≤ C ·
(

2µ

ξ2e

)µ

· e(ξ, k)ν

It remains to show that

2h(ν/n)·n ·
( c

n

)µ

· |G(k; ν, µ)| ≤ (τk)−ν .

We write ν = xνn and λ = xλxνn. (xν ∈ (0, 1], xλ < η)

C · 2h(ν/n)n · (τk · e(ξ, k))ν ·
(

2µc

ξ2en

)µ

< 1

⇐ 2h(xν) · (τk · e(ξ, k))xν ·
(

cxν(k + 2xλ)
ξ2e

)xν( k
2 +xλ)

< 1.

Set ξ = 1.85. The condition above holds for all xν ∈ (0, 1] and xλ ∈ (0, η).
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