Robust Combiners for Cryptographic Protocols

Christian Sommer, September 2006 Supervisor: Bartosz Przydatek

Robust Combiners for Cryptographic Protocols, Master Thesis ETH Zurich, Christian Sommer, September 2006 1

Motivation

- Cryptography relies on computational assumptions.
- \blacksquare The hardness of these is unproven (factoring, discrete \log).
- In the design of primitives, what assumptions shall we rely on?
- (roughly:) Combiners allow to rely on the strongest assumption without knowing which one it is.

(k,n) combiners, definition (Harnik et al., Eurocrypt 2005)

- C ryptographic primitive $\mathbf T$
- n implementations t
- If k implementations are secure, combiner is secure

 \Box

 (k,n) combiners, variations (Harnik et al., Eurocrypt 2005)

Third-party black-box: \blacksquare inputs/outputs from third-party no transcript

Transparent black-box:

for interactive primitives

combiner can use transcript

all messages sent to other party (on-line access only)

Black-box:

use implementations as black-boxes

off-line access possible

Related work

Harnik et al., Eurocrypt 2005

 \blacksquare No transparent black-box $(1,2)$ -robust combiner for \mathbf{OT}

 \blacksquare Third party black-box $(2,3)$ -robust combiner for \mathbf{OT}

Herzberg, RSA 2005

Analysis of folklore construction

Sharing combiner for BC (majority secure)

Meier, Przydatek, Crypto 2006

 \blacksquare Black-box $(1,2)$ -robust combiner for \bold{PIR}

PIR-to-BC, PIR-to-OT combiner

Work of this thesis

BC

- \blacksquare No transparent black-box $(1, 2)$ -robust combiner for BC (proof similar to Harnik et al. 2005)
- **Analysis of sharing combiners for BC from Herzberg 2005** (results slightly improved according to different definition)
- **Proof for black-box** $(1, 2)$ -robust combiner for BC (known)

IP PIR

Bit commitment

- $\text{COMMIT}: \{0, 1\} \times \{0, 1\}^m \to \{0, 1\}^n$ $(b, \rho) \mapsto c$, send result c
- \blacksquare OPEN : send randomness ρ and bit b
- \blacksquare Hiding: impossible/hard to compute b from c
- **Binding: impossible/hard to open** c for another $b' \neq b$

Possible $(1, 2)$ combiner inputs, notation

- \blacksquare (bc^H, bc^{bH}) First implementation: guaranteed hiding Second: guaranteed binding and hiding (capital letter: emphasis on inf.-th./stat. property) \blacksquare (bc^{bH}, bc^H) positions changed
- \blacksquare {(bc^H, bc^{bH}),(bc^{bH}, bc^H)}

Set of all possible inputs specifies what the combiner is capable to handle.

- (Often: all permutations of one input, as above)
- $(1, 2)$ -combiner for BC handles $\{(\mathtt{bc}, \mathtt{bc}^{bh}),(\mathtt{bc}^{bh}, \mathtt{bc})\}$

■ Hiding is information-theoretic secure, never broken One binding assumption might be broken $\{(\mathtt{bc}^H, \mathtt{bc}^{bH}), (\mathtt{bc}^{bH}, \mathtt{bc}^H)\}$

Commit to the same bit twice

■ Binding is information-theoretic secure, never broken One hiding assumption might be broken $\{(\mathtt{bc}^B,\mathtt{bc}^{Bh}),(\mathtt{bc}^{Bh},\mathtt{bc}^{Bh})$ B) }

Commit to b_1 and b_2 , where $b=b_1\oplus b_2$

First scheme is information-theoretic binding ■ Second scheme is information-theoretic hiding (at least) one cryptographic assumption holds $\{(\mathtt{bc}^{Bh},\mathtt{bc}% ^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Bh},\mathtt{bc}^{Ah}(\mathtt{bc}^{Ah},\mathtt{bc}^{Ah}(\mathtt{bc}^{Ah},\mathtt{bc}^{$ $^{H}), (\mathtt{bc}^{B},\mathtt{bc}^{bH})\}$

No transparent black-box combiner possible!

 $\blacksquare \Rightarrow$ no transparent black-box $(1,2)$ -robust combiner possible

Proof idea (adapted from Harnik et al.)

- Standard proof: construct a world where $\rm BC$ exists (with oracles) but combiners do not.
- Combiner could use only secure implementation, i.e., it exists.
- **Therefore, we show two worlds and in at least one the situation** is as described.

■
$$
bc^{Bh}
$$
 : {0, 1} × {0, 1}ⁿ → {0, 1}²ⁿ, no collision

\bullet bc^{bH} : $\{0,1\} \times \{0,1\}^n \rightarrow \{0,1\}^n$, two random strings per c $\forall c \in \{0,1\}^n \exists r_0, r_1 \in \{0,1\}^n : r_0 \neq r_1 \wedge \text{bc}^{bH}(0, r_0) = \text{bc}^{bH}(1, r_1) = c$

("efficient") black-box combiner for BC

Summary, BC-combiners

Third-party black-box

- Easy if majority of input implementations is secure
- Easy if we know which ^player to protect

- **Transparent black-box**
	- \bullet $(1, 2)$ combiner impossible

■ Black-box

 \bullet (1,2) combiner through OWF

Thank you!

Questions?