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Abstract

Computing shortest paths in graphs is one of the most fundamental and well-studied problems in
combinatorial optimization. Numerous real-world applications have stimulated research investi-
gations for more than 50 years. Finding routes in road and public transportation networks is a
classical application motivating the study of the shortest path problem. Shortest paths are also
sought by routing schemes for computer networks: the transmission time of messages is less when
they are sent through a short sequence of routers. The problem is also relevant for social networks:
one may more likely obtain a favor from a stranger by establishing contact through personal con-
nections.

This thesis investigates the problem of efficiently computing exact and approximate shortest
paths in graphs, with the main focus being on shortest path query processing. Strategies for com-
puting answers to shortest path queries may involve the use of pre-computed data structures (often
called distance oracles) in order to improve the query time. Designing a shortest path query pro-
cessing method raises questions such as: How can these data structures be computed efficiently?
What amount of storage is necessary? How much improvement of the query time is possible?
How good is the approximation quality of the query result? What are the tradeoffs between pre-
computation time, storage, query time, and approximation quality?

For distance oracles applicable to general graphs, the quantitative tradeoff between the storage
requirement and the approximation quality is known up to constant factors. For distance oracles
that take advantage of the properties of certain classes of graphs, however, the tradeoff is less
well understood: for some classes of sparse graphs such as planar graphs, there are data structures
that enable query algorithms to efficiently compute distance estimates of much higher precision
than what the tradeoff for general graphs would predict. The first main contribution of this thesis
is a proof that such data structures cannot exist for all sparse graphs. We prove a space lower
bound implying that distance oracles with good precision and very low query costs require large
amounts of space. A second contribution consists of space- and time-efficient data structures for
a large family of complex networks. We prove that exploiting well-connected nodes yields effi-
cient distance oracles for scale-free graphs. A third contribution is a practical method to compute
approximate shortest paths. By means of random sampling and graph Voronoi duals, our method
successfully accommodates both highly structured graphs stemming from transportation networks
and less structured graphs stemming from complex networks such as social networks.
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MILLE VIAE DUCUNT HOMINEM
PER SAECULA ROMAM.
(All roads lead to Rome.)
(Es führen viele Wege nach Rom.)

Alanus de Insulis
in the Liber Parabolarum

12th century AD
1

Introduction

Imagine you wanted to travel from central Tokyo to visit the place where I grew up, which is the
village of Ottenbach in Switzerland. What is the fastest way to get there?

Imagine you wanted to get in touch with Nelson Mandela using a sequence of personal intro-
ductions through friends and friends of friends. What is the shortest such sequence?

Imagine you wanted to access a webpage on the Internet. Which routers should be used such
that the necessary information is downloaded to your computer fastest?

These questions have something in common, in that their (optimal) solution is the shortest
path between two points of a network: a transportation network, a social network, and a router
network. All roads may lead to Rome, but we wish to arrive as soon as possible. The aim of this
thesis is to provide means to efficiently compute shortest paths in networks.

1.1 Networks and Graphs

Figure 1.1: The Königsberg bridges as depicted by Leonhard Euler in his article “Solutio Prob-
lematis ad Geometriam Situs Pertinentis” on page 129 in volume 8 of Commentarii Academiae
Scientiarum Petropolitanae in 1741.

You may have heard of the seven Königsberg bridges and the question as to whether one can,
in one walk, cross each bridge exactly once. Leonhard Euler resolved this question in 1735 by
proving that there is no such walk. His proof works as follows. Consider the island denoted by
the letter A on the illustration in Figure 1.1. Euler made the following important observation:
although the island contains many buildings, streets, and paths, the relevant information is the
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CHAPTER 1. INTRODUCTION

island’s connections (the bridges) to the other parts of the city. This observation led him to create
an abstract discrete structure, later termed a graph. He identified each landmass with a node
and each bridge with an edge connecting the two corresponding nodes in the graph. A walk in
Königsberg corresponds to a walk in the graph; crossing a bridge is represented by traversing an
edge. Euler then noted that the number of edges adjacent to a node is essential. Except for the
endpoints of the walk, all intermediate nodes must have an even number of adjacent edges, since
any walk must leave the node exactly once for every time entering it. Since all of the four nodes
have an odd number of edges, there cannot be any walk that traverses each edge exactly once.

Modeling the bridges by the edges of a graph helped Euler to solve the problem of the
Königsberg bridges. Ever since, graphs have been used as an abstraction of structures in the
real world:

Graphs are, of course, one of the prime objects of study in Discrete Mathemat-
ics. However, graphs are among the most ubiquitous models of both natural and
human-made structures. In the natural and social sciences they model relations among
species, societies, companies, etc. In computer science, they represent networks
of communication, data organization, computational devices as well as the flow of
computation, and more. In mathematics, Cayley graphs are useful in Group Theory.
Graphs carry a natural metric and are therefore useful in Geometry, and though they
are “just” one-dimensional complexes, they are useful in certain parts of Topology,
e.g. Knot Theory. In statistical physics, graphs can represent local connections be-
tween interacting parts of a system, as well as the dynamics of a physical process on
such systems. [HLW06]

In a graph representing a road network, intersections and streets can be modeled by nodes
and edges, respectively. Two nodes have an edge in between if there is a street connecting the
two corresponding intersections. For a computer network, routers and the connecting network
cables are mapped to nodes and edges, respectively. In a social network, the connections are not
physical. Individuals can be modeled by nodes; two nodes are connected by an edge whenever
the corresponding individuals are friends. In other social networks, an edge may also indicate a
private or professional relationship other than friendship.

Different streets of a road network have different lengths. This is modeled by assigning each
edge a number, called its edge weight. This cost can reflect real-world values such as distance,
travel time, transmission time, and latency. In a graph modeling a social network, the edge weight
can also reflect the quality of a friendship, although this is arguably difficult to capture appropri-
ately by a single number [XNR10].

In the remainder of this introduction, we first review various example structures, for which a
graph serves as a suitable model. We then consider one central problem that can be solved using
graphs: we investigate applications of the shortest path problem (Section 1.2), in particular con-
temporary applications of the point-to-point shortest path problem (Section 1.2.2). We conclude
the chapter by stating the contribution of this thesis (Section 1.3).

1.1.1 Transportation Networks

Transportation networks are an integral part of the infrastructure in many countries. For this
reason, the study of transportation networks is an important field of research. We give three
examples of transportation networks: road, railway, and airline networks. A more realistic model
of transportation would ideally integrate networks of all three types [Fra08, DPW09, DPWZ09].

2



1.1. NETWORKS AND GRAPHS

Road Networks

As mentioned before, intersections and streets are represented by graph nodes and edges, respec-
tively. Also, edges may be assigned weights such as expected travel times or distances. All the
information included in the graph model can essentially be found by consulting a road map. The
reverse is not true. We cannot draw the original road map by considering the graph only, since
some information about the original drawing (or embedding) such as coordinates is not included.
The original map is just one possible drawing of the graph. A general graph is completely inde-
pendent from its embedding.

A graph that can be drawn on a plane such that no two edges cross (except for the endpoints),
is called planar. Since road networks often contain many bridges and tunnels, the corresponding
graphs are in general not planar. However, road networks and planar graphs share some important
properties, which render road networks tractable for many optimization problems. Navigation,
for example, is not as difficult as it could be on a general graph, since road networks have some
geometric and geographical orientation. Another characteristic of road networks is that, at every
intersection, the number of streets (and thus the number of choices when navigating) is quite low.
Still, planning efficient routes through a road network is very challenging since these networks
may be huge (millions of nodes) and dynamic (travel times depend on various factors such as the
current traffic situation and road maintenance).

Railway Networks

For railway networks, a straightforward model, analogous to road networks, would map stations
and tracks to the nodes and edges of a graph, respectively. Taking a train is represented by travers-
ing an edge. Again, edges can be weighted with distances or travel times. This model arguably
does not represent a real public transportation system very well. In road networks, one can con-
ceivably use a particular street at any time (except for small delays due to traffic lights). In railway
networks, however, trains are bound to a timetable. This may cause significant waiting time at a
station, which needs to be captured by a realistic model. Indeed, modeling railway networks with
timetable information is more involved than modeling road networks [MHSWZ04]. In the time-
expanded model for example, nodes represent both a location and a specific time simultaneously.
One station then corresponds to several nodes in the graph. Edges have different types; traversing
an edge means either taking a train, waiting at a station, or walking to a different track within a
station. Edge weights can be travel times (possibly walking or waiting times) or ticket prices. In
general, the graphs derived from railway networks and timetables are considerably more complex
than the graphs representing road networks.

Airline Networks

Air traffic networks can also be represented by graphs. Airports can be modeled by the nodes
of a graph. Two nodes are connected by an edge if there is an aircraft that can start and land on
and cover the distance between the corresponding airports. In this graph, almost all nodes are
connected. While in road networks, each intersection had up to half a dozen of connections, in
air traffic networks, airports can have hundreds of connections. Consequently, the corresponding
graphs are significantly more dense. For the moment, let us restrict the edges of the graph to
the routes that commercial airlines offer. Even when considering the graph with this restricted
edge set, some nodes have hundreds of adjacent edges, due to the fact that airlines often have a
small number of hubs (usually big airports) where all their routes connect. The airline network

3



CHAPTER 1. INTRODUCTION

is a so-called small-world network [WS98]: one can connect any two airports in the network by
following a sequence of only one to five connections [ASBS00]. From a graph-theoretic point of
view, airline networks are structurally very different from road and railway networks. Networks
without apparent structure are often called complex networks.

1.1.2 Complex Networks

Various complex systems are highly interconnected: phenomena that were assumed to be local
only are sometimes unexpectedly shown to influence the other end of the system. Researchers from
fields such as physics [BA99, New00, WS98], mathematics [BRST01, BR04, FFV07, Lov09],
computer science [KL06, WM03], biology [MV06, LT09], and social science [LPA+09] analyze
these systems to explain how (and sometimes why) everything is connected [Str01, AB02, New03,
GGM06, BLM+06]. The objectives of network scientists are (1) to make connections in real-
world systems explicit (“to connect the dots” [Hay06]), (2) to analyze and understand the network
structures formed by these connections, and, possibly, (3) to exploit the structural properties of
these systems. The challenges are manifold. Extracting the connections of complex systems
can already be very difficult since these systems tend to be inherently distributed and very large.
Once the connections have been made explicit, that is, once a graph (in this context also termed
complex network) has been created, the next challenge is awaiting. Due to the often massive size
of the graph (millions of nodes and edges are not uncommon), analyzing its structure requires
sophisticated methods, techniques, and tools. Researchers often use methods to decompose the
graph into different clusters and communities of smaller size, which are easier to understand than
the whole graph. Another approach is to focus on ‘important’ nodes within the graph. Important
nodes are conjectured to be those that are well connected with most of the other nodes, or those
that enable important connections between other nodes.

Although these systems and the corresponding complex networks appear to lack structure,
they still have some important commonalities: they show a large variation in the number of
links connected to each node; these networks often have a few nodes that are very well con-
nected while a majority of the nodes have only few interactions; the number of interactions ap-
pears to follow a power law [Mit03, New05, CSN07]. These networks are called scale-free net-
works [dSP65, BA99, BAJ00, New00, WS98]. Also, many complex networks are small worlds,
which means that, although many nodes only have a few direct interactions, they are still con-
nected to all the other nodes through very short chains of interactions.

In the following, we discuss some specific complex networks in more detail.

Citations among scientific articles

The graph modeling citations among scientific articles is a directed graph, which means that its
edges are oriented. The node corresponding to article A has a directed edge to the node corre-
sponding to article B if and only if article A cites article B. The citation of a research article by
another one is an explicit relationship indicating influence and dependence. An article that gets
cited by many other articles is likely to have had some influence on many researchers. For this
reason, the impact of an article is often measured by the number of citations an article received.
Researchers and managers evaluate the success of a research article based on its impact. There are
also potential applications other than evaluating and ranking articles and researchers. For exam-
ple, the citation graph may be of use in a system that automatically suggests reviewers for articles
submitted to a journal.
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The network of citations among scientific articles was in fact one of the first complex net-
works ever analyzed [dSP65]. It has been found that, over time, articles that are cited by many
others, acquire even more citations [dSP76]. This cumulative advantage, (later termed preferential
attachment [BA99]), appears to be very common in complex networks.

Web Graph

The web consists of billions of pages that are connected by hyperlinks. For the web structure, a
directed graph is a suitable model [KKR+99, BKM+00, DLL+06]. Web pages and hyperlinks are
mapped to nodes and edges, respectively. The resulting structure is also called web graph. Similar
to the citation between two scientific papers, the hyperlink between two web pages indicates some
dependence and influence. A scientific article is considered important if it is cited by many others;
analogously, a webpage is considered important if it is linked to by many others. Modern search
engines often make use of this network structure when ranking search results [PBMW99, FVC07].

An accurate snapshot of the web graph is hard to obtain: the number of web pages is massive,
the pages reside on different servers all around the world, and many pages change constantly.
Due to these reasons, researchers analyze subsets and samples of the web. Based on such small
samples, it is conjectured that the web graph is scale-free [BAJ00], which means that the number
of incoming links per web page obeys a power law. It is also conjectured that most pages that are
inter-linked, are connected by rather short chains of links [AJB99]. Based on the characteristics
of sample web graphs, researchers also build mathematical models [KRR+00, BBCR03, FFV07,
CKL+09], using which the future structure of the web graph can be predicted.

Weblogs (“blogs”) form a very popular part of the web [Shi03]. Since good content on the
web is proportionally rare and since most blog writers (termed “bloggers”) also read other blogs,
interesting ideas, rumors, and stories propagate very quickly within the blogosphere. Some blogs
are read by millions of readers and the corresponding writers have the power to influence their
audience to a certain extent. It is thus no surprise that companies try to make use of this “network
of influence” when launching new products or services. The analysis of the blogosphere is indeed
a vibrant research topic [LMF+07, LNMG09].

Router Connections

Since the Internet has become an integral network handling a significant percentage of business
transactions both among companies and between companies and individuals, any technical failure
might have drastic consequences in the real world. The Internet is nowadays considered being
critical infrastructure almost at the level of transportation and power networks.

Although the Internet is a physical network consisting of routers and cables (modeled re-
spectively by nodes and edges of a graph), there is no accurate map available. Researchers try
to create such a map by sending messages to random computers while monitoring (using the
tool traceroute) which routers the messages went through [FFF99, VPSV02, Coo03]. These
measurements yield that the Internet (or some of its subgraphs) also has properties of power-law
graphs. However, it is not clear whether these properties were obtained due to measurement bias
in the map creation process [ACKM09].

The “speed of the internet” highly depends on the efficiency of the internet protocols, in par-
ticular the routing protocols. The performance of a protocol highly depends on the underlying
network structure. Since speed matters and due to the importance of the Internet as critical infras-
tructure, the network of router connections is a very important network to understand and analyze.
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CHAPTER 1. INTRODUCTION

Networks in Biology

Traditionally, proteins are identified based on their actions as building blocks, catalysts, or signal-
ing molecules. The network view identifies a protein by its physical interactions with other pro-
teins. This yields its contextual role in a protein–protein interaction network [UGC+00, CHC+00,
ICO+01, RSR+01, GBB+03, LAB+04]. Proteins and interactions are represented by nodes and
edges of a graph, respectively.

Recently, many networks have been extracted from biological data [MV06]. Examples other
than protein interaction networks include metabolic networks, which encode biochemical reactions
between metabolic substrates [RSM+02], and transcriptional regulatory networks, which describe
the regulatory interactions between different genes [IFB+02, SLSP03].

Network science may help to understand the human body and its internal actions, for exam-
ple by determining the role, function, and essentiality of proteins or genes [SL03, JOB03] by
analyzing shared interaction partners in the protein–protein interaction network. This knowledge
may then help to find treatments for diseases such as cancer by identifying drug targets [VLL00].
Another potential application in medicine lies in the intersection with neuroscience. Abnormal
interaction patterns in the brain could help diagnosing neurological disorders [SG05]. These ap-
plications indicate that the potential of an interplay between biology and network science is enor-
mous.

Social Networks

Around 1929, the Hungarian writer Frigyes Karinthy [Kar29] formulated the following challenge:
find a person who you can not be connected to by a friendship chain of at most five people. In
other words, Karinthy conjectured that everybody knows everybody else through a short chain of
personal connections. Milgram [Mil67], in his famous small-world experiment [Mil67, TM69],
tried to verify this conjecture with an empirical study. Participants in the Milgram study were sup-
posed to deliver a letter addressed to a specific person, not by mailing it directly, but by forwarding
it to somebody they know on a first-name basis — somebody who is more likely to know the ad-
dressee. Milgram was interested in the number of forwarding steps, which corresponds directly
to the length of a friendship chain. Although most letters never arrived, many letters reached the
addressee after a very small number of forwarding steps only.1 “It’s a small world!” Milgram’s
result exhibits a stronger statement than Karinthy’s conjecture. For two individuals, the friendship
chains connecting the two are not only short, it is also possible to “find” such a chain.

The small-world phenomenon has been fascinating people around the world for many years.
For example, the popular Hollywood movie “Six degrees of separation” [Gua93] is devoted en-
tirely to small-world phenomena. As another example, the members of some communities “mea-
sure” their interaction distance to distinguished individuals. Actors are interested in their co-
starring distance to Kevin Bacon, Mathematicians care about their collaboration distance to Paul
Erdős,2 and players of the popular game Go measure their distance to Honinbo Shusaku.3

In social networks [dSPK78], we consider individuals as nodes and relationships as edges
of a graph. If the relationship is friendship, social networks are far more than a scientific play-
ground: online social networking platforms such as Facebook, MySpace, mixi, and others have

1Some researchers doubt the significance of Milgram’s results [Kle02b, Kle02c].
2My own Erdős number is currently 3. Sommer–Houle–Avis–Erdős and Sommer–Teng–F. Yao–Erdős are two

disjoint shortest paths containing 3 publications each.
3See http://senseis.xmp.net/?ShusakuNumber — Erdős apparently has a Shusaku number of at

most 6.
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conquered the web and their corresponding websites attract millions of users. Privacy aside, these
social networking websites generate massive data sets that are of huge interest for advertising
companies and marketeers. Some of this data is made available to scientists as well (usually after
anonymization). Companies also analyze their internal communication patterns to improve pro-
ductivity and to identify leader personalities [GBL08]. Social networks can also be extracted from
phone call [OSH+07] and instant messaging [LH08] data. Other data on social relationships may
be harder to collect. If an edge of the graph indicates sexual interaction (not necessarily a subset
of the friendship edges), not everybody may be willing to reveal all connections. In a sample
of 2,810 Swedes, the number of sexual interactions per person showed the structure of a power
law [LEA+01]. Although the exact connections were not retrieved, the power-law distribution in
the number of connections is already consequential. Epidemics tend to arise and propagate very
fast in power-law networks [WS98, PSV01]. It is also known that the speed of disease propaga-
tion can potentially be reduced by prevention campaigns that strategically target those individuals
with a large number of partners [LEA+01]. The previous example indicates that knowledge and
understanding about the structure of complex networks may have an impact on the real world.

Network of networks and techno-social systems

The spread of a general infectious disease depends on interactions of different types. One net-
work is not enough; several networks have to be considered simultaneously to find effective con-
tainment strategies in urban social networks [New02, MPSV02, EGK+04, MPN+05, GCE+09].
Techno-social systems consist of a technological component, often physical infrastructure such
as transportation systems, and a human component, which could be any form of communication,
potentially influenced by a social network. Understanding the interplay of both components is
necessary to predict, and eventually control and influence, techno-social systems.

It now seems possible to imagine the creation of computational forecasting infrastruc-
tures that will help us design better energy-distribution systems, plan for traffic-free
cities, anticipate the demands of Internet connectivity, or manage the deployment of
resources during health emergencies. [Ves09]

1.2 Shortest Paths

Once we have performed the abstraction by making connections explicit and modeling them by a
graph, we can work with this model and compute properties of the graph without considering the
exact details of the underlying network. Interesting properties could be graph distances between
nodes. Tobler [Tob70] invoked

... the first law of geography: everything is related to everything else, but near things
are more related than distant things.

This law ought to be generalized to a law holding for many networks. An edge of a graph es-
sentially indicates a relationship between the two corresponding entities: between two interacting
proteins, between two friends, between two intersections in a road network, or between two routers
connected by a cable. If this relationship is somewhat transitive,4 which means that, for example,

4In some graphs, two nodes are connected by an edge if there is some conflict between the corresponding edges.
For example, two neighboring wireless devices cannot send at the same time due to interferences. These conflict graphs
often occur in scheduling problems, which can be solved for example by coloring the graph. In this thesis, however,
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if Paul is friends with Linton and Stanley, then Linton and Stanley are probably closer to each
other than if they were not friends with Paul. Or, to consider another example, if protein A inter-
acts with and influences protein B, and B influences C, then A has an indirect influence on C.
The shorter the chain of interactions, the stronger the influence. This is the first law of networks.

In graphs, the distance between two nodes s and t (source and target, respectively) is defined as
follows. If s and t are connected by an edge, their distance is 1. If they are not directly connected,
the distance is defined by the length of a shortest path between s and t, which is a sequence of
adjacent edges. In a weighted graph, the length of a path is defined by the sum of the weights of
the edges on the path. Consequently, shortest paths are defined with respect to these weights. Note
that, in weighted graphs, even if two nodes are connected by an edge, depending on its weight, the
edge is not necessarily part of any shortest path.

To each of the three questions at the beginning of this chapter the answer is a shortest path in
the corresponding network: the fastest way to get to Ottenbach, the shortest sequence of friends
to get in touch with Nelson Mandela, and the fastest route to a webserver. Many other ques-
tions also have shortest paths in graphs as answers. Whenever we must traverse a network or
send someone or something through a network between two points in a fast, cheap, or reliable
way, it is likely that solving a shortest path problem will provide the optimal solution. Other
applications of shortest path computations include (but are by no means limited to) network opti-
mization [GN67, BMW89], packet routing [SS80], image segmentation [CK96, MB98, FUS+98],
computer-assisted surgery [MDMCM01], computer games [Sto99], DNA analysis [Sch98], in-
jection molding [Joh97], postman problems [EJ73], operator scheduling [BOR80], production
planning [Kle63, GN64, Whi69, Elm77, LN94], re-allocation of resources [Wri75], approxima-
tion of piecewise linear functions [II86, p. 33], and VLSI physical design [CKL97]. Further-
more, the countless optimization problems that can be solved by deterministic dynamic program-
ming [CLRS01, Chapter 15] (Knapsack, for example [Fri76]), can also be solved by a shortest
path algorithm (on a very large graph) by identifying the stages of the dynamic program with
the nodes of an acyclic, directed network. The shortest path problem also has a deep connection
to the minimum cost flow problem, which is an abstraction for various shipping and distribution
problems, the minimum weight perfect matching, and the minimum mean-cycle problem. More
sophisticated algorithms for combinatorial optimization problems such as network flows often
need a shortest path subroutine.

1.2.1 Classical Results

Methods to find a shortest path were discovered and analyzed already in the late 50’s and early
60’s by Bellman [Bel58], Bock and Cameron [BC58], Caldwell [Cal61], Dantzig [Dan57, Dan60],
Dijkstra [Dij59], Floyd [Flo62], Ford [For56], Fulkerson [FF58], Hu [Hu67], Klee [Kle64], Ley-
zorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [LGJ+57], Minty [Min57, Min58], Moore
[Moo59], Mori and Nishimura [MN67], Parikh [Par60], Rapaport and Abramson [RA59], Shimbel
[Shi53, Shi55], Warshall [War62], Whiting and Hillier [WH60], and probably others.5 Despite the

we restrict ourselves to graphs of the type encountered in the previous examples, assuming that an edge represents a
somewhat positive relationship and not a conflict.

5Due to the large amount of literature, providing an exhaustive list appears to be difficult. The first survey article
reviewing shortest path algorithms was apparently written and published in 1960 [PW60] and complemented in the
same year with four additional solutions [PRB60]. Neither article mentions Dijkstra’s algorithm.
Robacker [Rob56] and Gallai [Gal58] (and potentially Egerváry [Ege31]) studied the shortest path problem without
giving an algorithm. Research on the strongly related (but harder) Traveling Salesman Problem started earlier, see for
example [Hel53, Kuh55, DFJ54].
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exponential growth of computing research, many of their algorithms are still in use today in one
form or the other, most prominently Dijkstra’s algorithm, which literally every computer science
student learns as an undergraduate. Dijkstra’s algorithm solves the Single Source Shortest Path
(SSSP) problem: the algorithm starts at one point (the source) and explores the whole graph in
all directions until the distances to all the other nodes are known. For an illustration of the short-
est path tree in a transportation network, see Figure 1.2. If the user is interested in the distance
to one target node only, it is possible to stop the search as soon as this specific target has been
found. Some of the other classical algorithms solve the All Pairs Shortest Path (APSP) problem:
the distance and the shortest path between all pairs of nodes is computed.

Figure 1.2: The shortest path tree starting at the node representing the city of Los Angeles. Orig-
inal by George B. Dantzig [Dan57]. “Hence the optimal path is from Los Angeles to Salt Lake
City, then to Chicago, and finally to Boston.”

The importance of the problem and the numerous applications have stimulated research ef-
forts for more than fifty years.6 A large fraction of these efforts targets the shortest path problem
in transportation networks, since route planning is arguably one of the most important applica-
tions of shortest path algorithms. Intelligent navigation systems know the current location using
GPS and guide cars along the shortest route to minimize travel time, distance, or fuel and energy
consumption. Some of these systems also react to changing traffic conditions and, in the future,
cars may communicate with each other and negotiate routes to regulate the overall traffic flow and
manage congestion. The end users are often interested in trip planning, which means that they
want to know the distance and the shortest, cheapest, or most reliable path between two specific
points.

1.2.2 Point-to-Point Shortest Path Queries

We ask for the distance between two points of a network. Recall that Dijkstra’s algorithm solves
the Single Source Shortest Path (SSSP) problem by exploring the whole graph starting from the
source until the distance to all other nodes is known. Dijkstra’s algorithm can be stopped pre-
maturely, as soon as the target has been found. Another improvement to decrease the running

6A search for “shortest path” on Google scholar scholar.google.com, a search engine for scholarly literature,
returns more than 150,000 results. Hu [Hu71] states: “This is an area in which people keep writing papers.”
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time is to start a search from both the source and the target and stop when the two searches
meet [Nic66, Mur67b, Poh71, SdC77, dC83]. Still, Dijkstra’s algorithm may explore the whole
graph. A complete exploration is too expensive. The objective is to develop a method that is much
faster than Dijkstra’s algorithm. In return, the method is allowed to pre-compute a data structure
that, later, assists shortest path computations, called queries. We thus assume that the graph is
known some time before the first query is asked.

Shortest path query processing resembles a typical data base problem: create an index by
materializing information to speed up certain queries [Han87, SFG97]. One strategy would be
to precompute the result for every possible query. This is expensive in terms of time and space;
storing all the results may be prohibitive since the number of possible queries is quadratic in the
number of nodes. No precomputation, the other extreme, is too slow at query time. We aim for
a mid-point, a good compromise, between “no precomputation and complete processing” at the
time of query and “complete precomputation and a simple look-up” at the time of query [AJ89].

Shortest path query processing is an integral part of many applications, in particular Geo-
graphic Information Systems (GIS) and intelligent transportation systems [JHR96]. A challenge
for traffic information systems or public transportation systems is to process a vast number of cus-
tomer queries on-line while keeping the space requirements as small as possible [Zar08]. Trans-
portation planning systems and GIS form arguably the most established application scenarios for
shortest path algorithms. The following sections list — without being exhaustive — other motiva-
tional examples of contemporary applications, where computing short paths is a key component
and where a method that allows for efficient shortest path queries may potentially speed up the
total computation significantly.

Traffic Simulations

Two objectives of traffic simulations [HP58, CWM94, SBA+95, HLW98, PW99, EW03, RN04a,
TE09, TKE+09] are to forecast future traffic patterns and to predict the consequences of certain
changes to the road network. While sometimes the consequences are easily predictable and intu-
itively clear, there are paradoxical situations where closing a road actually improves the overall
traffic situation [Bra68]. Simulations can help to identify these counterproductive roads. Simula-
tion results may also help in urban planning [SG67, SL67, RTMS05, Bat08] to reason about the
economic and social impact of building new roads. With realistic estimates of population mobility
and parameterized models for simulating the progress and transmission of a disease, simulations
may improve predictions in public health and epidemiology [EGK+04, MPN+05, Ves09].

Network-based simulators assume that cars drive along shortest paths. Within the simulator,
at each virtual time step, entities are routed one step further from the source to the destination
along a shortest path. The simulation requires the computation of a large number of shortest
paths [ZKM97, BBJ+02, Hol04, RN04a, BG07, TE09, TKE+09]. Therefore, various simulators
can potentially reduce the total running time by exploiting a fast query processing method. Since
in the real world drivers rarely use the exact shortest path, even a method returning approximate
shortest paths may be of help.

Image Segmentation

Image segmentation [CK96, MB98, FUS+98] is an integral part of image processing applications
such as accident disposal, medical images analysis, and photo editing. The image segmentation
problem is to group together neighboring pixels whose properties are coherent. The grouping
process often relies on shortest path computations. Object surfaces are in some sense continuous.
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Continuous shortest paths are computed with the fast marching method [Tsi95, Set96, HPCD96],
which can be seen as a continuous version of Dijkstra’s algorithm. However, since the discrete
lattice [Bes74] is the standard reconstruction of image data, discrete algorithms are also used in
many applications. Graph-based algorithms7 consider the image as a graph in which each pixel is
a node, connected by an edge to each of the 4 (or 8 or more) neighboring pixels. An important
part is to assign appropriate weights to the edges, based on the image “potential” of the two pixels
and their Euclidean distance [Bor84, TM92].

The graph-based intelligent scissors algorithm [MB98] heavily relies on shortest paths. The
user provides two endpoints; the algorithm computes the result of the corresponding point-to-
point shortest path query and the resulting path is interpreted as a part of the object boundary.
In other words, given two endpoints of a contour, the algorithm determines the maximum like-
lihood contour connecting them. The edge weights are probabilities and, by taking the negative
logarithm, the algorithm can just sum up the weights on the path to retrieve the optimal con-
tour.8 For boundary computations in 3 dimensions, the intelligent scissors algorithm must be
adapted [KH05, Gra06, Gra08]. A boundary can be found by combining many shortest paths until
a closed surface is obtained [KH05].

In computer vision [Gra08, PC06], shortest path algorithms on weighted graphs have found
numerous applications other than segmentation such as centerline finding [BKS01, BSB+00], ra-
diation therapy [CLW08], mesh morphing [LDSS99, ADG+06], video summarization [PMT03],
and finding roads and trails on satellite images [FTW87, HSP92, MZ93, SMR97, MB08].

Drug Target Identification

Shortest paths in interaction graphs are important in systems biology. Signaling paths for example
are routes along which one molecule can affect another one [KvK09, Ari00]. The average path
length already reveals valuable information about a cell or a body.

In a sense, the average path length in a network is an indicator of how readily “in-
formation” can be transmitted through it. Thus, the small world property observed
in biological networks suggests that such networks are efficient in the transfer of bi-
ological information: only a small number of intermediate reactions are necessary
for any one protein/gene/metabolite to influence the characteristics or behavior of an-
other. [MV06, Section 3, p. 8]

7We note that image segmentation based on minimum spanning trees in these graphs is also a suitable ap-
proach [Zah71, FH04].

8This likelihood transformation can be applied to Markov chains [MT93] in general [Met07, Chapter 6]. We may
interpret a Markov chain with state set S, described by its (stochastic) transition matrix P = (pij)i,j∈S , as a directed
graph G = (V, E). The edge weights can be set with a likelihood approach, where the edge (i, j) ∈ E has weight
wLL(i, j) := − lg pij and the path length is the negative log-likelihood. The shortest path between two states with
respect to the weights wLL(i, j) is the path with the highest probability (reaction pathway) and the result of a point-
to-point distance query yields a lower bound on the transition probability between the corresponding states. For rather
long paths, the likelihood approach may produce misleading results. The Free Energy Approach tries to overcome this
problem. We assume that the stationary distribution is unique, π = (πi)i∈S . Now, the discrete free energy of a state
is Fi := − lg πi > 0. The edge weights are constructed such that the shortest path between two states overcomes
the lowest discrete free energy barriers. This yields weights wFE(i, j) := |Fj − Fi|. Assigning likelihood or free
energy edge weights may be a suitable model for social networks as well. The probability of favor serves as a possible
interpretation. Here, the sum of the weights of edges adjacent to one node need not necessarily to sum up to 1.
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The average path length is related to a graph’s Wiener index9 [Wie47, Rou86], which could po-
tentially be approximated using random sampling and (approximate) point-to-point shortest path
computations.

The next potential application leverages information on paths other than their average length.
We wish to know which proteins, genes, and metabolites are more important and powerful than
others, meaning that they have a strong influence on others. These may be suitable targets for
medication [VLL00]. Various graph-theoretic centrality measures somehow correlate with the
importance of a node. The degree centrality for example counts the number of neighbors of a
node. Intuitively, the more interaction partners a protein has, the higher its potential to influence
others [Fla63]. More complex measures distinguish purely local effects (such as the number of
interaction partners) from global organizational effects [WS03]. For example, if a protein is on
many reaction pathways or signaling paths, it has some potential for control [Fre77]. It can stop —
or at least slow down — the reaction by breaking the chain of interactions, due to the fact that it lies
between two indirectly interacting proteins. The number of shortest paths that a node takes part
of is called its betweenness centrality [Bav48, Shi53, Sha54, Fre77]. Betweenness accounts for
direct and indirect influences of proteins at distant network sites and hence it allows one to relate
local network structure to global network topology. Closeness centrality [Bav50, Bea64, Sab66]
measures how far away a node is from all the other nodes. Degree centrality counts the mere
number of interaction partners.

An important application of network centrality in pharmaceutical research could be drug target
identification. One of these potential target genes is p53 [VLL00]. The loss of p53 function is very
damaging: p53 is among the genes most likely to be mutated in cancers. In fact, p53 function loss
occurs in nearly all human cancers. It turns out that p53 corresponds to a highly connected node
in the interaction graph.

Centrality also allows to predict protein essentiality [JOB03, JBIH05]. Interesting proteins are
those with high betweenness-centrality, yet low local connectivity. Their low connectivity would
imply that they are unimportant, but their high betweenness suggests that these proteins may have
a global impact, acting as important links between modules. The removal of a protein can have
different phenotypic effects including lethal or non-lethal effects and a slow-down of growth.
There is a positive correlation between lethality and connectivity [JMBO01]. The most highly
connected proteins in the cell are the most important ones for its survival. The more essential a
gene (or its associated protein) is to a pathogen or to a cancerous cell, the more attractive it is as
a drug target [MV06, Section 4]. So far, however, there is not much evidence that for two nodes
with the same number of interactions the node with higher betweenness centrality is significantly
more important [JBIH05]. Currently, degree centrality serves as a good indicator. Nevertheless:

In most of the studies, [...] the centrality score of a node was found to be indicative of
its likelihood to be essential. In particular, this appears to be true for degree centrality,
betweenness centrality, and eigenvector centrality measures. [MV06]

The computation of centrality indices has been studied [Bra01] and since exact sequential methods
are rather slow, there are efforts to parallelize the computations [MEJ+09] and to find approximate
solutions [EW04, BKMM07]. Since the biological networks are often sampled and have some
errors, centrality measures are not exact anyway [CV03a]. Depending on the application, approx-

9In chemistry, the Wiener index of a molecule is the sum of all shortest path lengths between non-hydrogen atoms
in the graph defined by the structure of the molecule. In general, the Wiener index of a graph is the sum of all shortest
path lengths among all nodes.
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imations may be sufficient. Centrality algorithms rely on the computation of functional pathways
and they could thus benefit from fast (approximate) path computations [RMJ06].

Community Detection

Complex networks are often huge and thus difficult to analyze. One way to obtain an under-
standing of complex networks is to decompose the network at hand into related components,
communities, and clusters. Several algorithms for clustering and community detection have been
proposed [GN02, NG04, New04, CNM04, APF+06, Dji06]. The algorithm by Girvan and New-
man [GN02, NG04] has been applied successfully to a variety of networks, including several
social and collaboration networks, metabolic networks, and gene networks. Their algorithm iter-
atively removes edges with high betweenness centrality. If a network contains highly-connected
communities that are only loosely connected by a few edges between clusters, then all shortest
paths between different communities must go along one of these few edges, which will therefore
have high edge betweenness. Removing these edges separates the communities from each other.
The method works very well for small graphs but it does not scale due to its high computational
demand [BLM+06, Section 7.1.3]. Again, computing the betweenness centrality is the bottle-
neck. If there are only few edges between different clusters, any approximate shortest path query
method would arguably also detect these edges. Approximating betweenness centrality or just
finding edges with high betweenness centrality can potentially be sped up using fast point-to-point
shortest path queries10 [RMJ07].

Social Search

The sheer size of the web (currently, the web consists of billions of pages), renders the search
for relevant information very challenging. Search engines are expected to find the “needle in
the haystack.” The search interface is supposed to be kept simple and the average user is not
entering much information; the search engine must find relevant information without knowing
what the user actually wants (sometimes he may not even know it himself or he may not be able
to express it appropriately). Imagine that a search engine would know basically everything about
the user (this scenario may actually already be reality). The query term combined with what a
user’s friends were looking for and which results they liked could enable the search engine to
make a well-educated guess on what the user would want to see. Almost like a recommender
system [GZC+09], the engine can rank the documents matching the search query term just for one
user, based on his interests — a personalized search [JW03]. It would aggregate the ratings for the
pages retrieved and then assign a higher ranking to those pages that people similar to that user, for
example his friends, liked best. To do so, efficiently retrieving proximity information in the social
graph is essential.

Involving context and social connections in ranking is a hot topic for search engines [VFD+07,
YBLS08, SR08, UCDG08, SCK+08, PBCG09] and computing social distances may soon be a
an important primitive, both for search engines handling keyword queries and for online stores
recommending items for purchase.

10Distance queries are inherent in graph clustering: a constant-factor k–clustering can be computed with t queries
to the distance oracle if and only if a graph k–partition can be computed with t queries to the adjacency matrix of
G [GMMO00].
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Social Networking

Shortest paths in social networks seem to be of interest for end users. On the website oracleof
bacon.org, for example, users can enter two names of actors and “the database server uses a
breadth-first search (BFS) to find the shortest path between pairs of actors.”11 Such a webpage also
exists for Mathematicians.12 In professional networking sites such as LINKEDIN or XING, users
can add their business contacts in order to get in touch with potential clients or employers through
a short chain of personal introductions. The corresponding webservers compute point-to-point
shortest paths in an online setting.

Analogous to the Erdős number project there is a social network based on collaboration on sci-
entific articles in various fields. Two scientists are considered connected if they have co-authored
one or more scientific papers together [New01]. One may assign weights to these connections
based on how many papers two authors share. Such weightings potentially capture the strength of
a relationship more appropriately. Shortest paths [New01, Sec. A] between scientists may help to
establish new professional contacts by following a sequence of personal referrals. Such systems
have been built years before online social networks became popular [KSS97a, KSS97b, Sha97a].
Scientific collaboration networks are also used to enhance communication at conferences. Some
researchers built a system called DEAIEXPLORER [KIK+06] that visualizes how two scientists
standing in front of a screen may know each other (a common affiliation such as that they wrote
a paper together, they both gave a talk at the same conference, they have a common co-author,
or they cite each other’s papers), which is supposed to help them communicating. The DEAIEX-
PLORER system computes relationships and connections between persons up to distance 4.

All these systems could potentially benefit from fast shortest path query processing.

Message Routing

Forwarding a message from a sender to a receiver through a network is called routing. Many
routing algorithms are variants, in one form or another, of shortest path algorithms that route
packets over a path of minimal cost [SS80]. The cost of an edge may reflect transmission capacity,
latency, congestion, error rates, and other features. On the chosen path, routers must know where
to forward a packet to. These decisions are made based on the information in the packet and the
routing table at the router. It is integral that this information is kept small (compact) while paths
remain short. Research in compact routing addresses this tradeoff. Compact routing focuses on
distances and ignores other influencing factors such as the quality of service provided (see [Hui00,
Chapter 11: Policy Routing]). It is assumed that these factors are abstracted out and aggregated
in the edge weight function. Large routing tables are difficult to cope with [Hui00, Section 9.1.2:
Routing Table Explosion, pp. 202–203].

As more and more networks get connected, the memory required for storing the rout-
ing tables grows. This memory requirement varies a lot with the routing protocol and
with the router’s architecture. In fact, the problem may appear in multiple ways. The
phrase “routing table explosion” is merely a catchall term for all the problems posed
by the manipulation of very large routing tables.

The tradeoff between routing table size and route quality is basically the distributed version
of shortest path query processing. Each router gets some part of the index, based on which

11Written by Patrick Reynolds on http://www.oracleofbacon.org/how.php (as of December 2009).
12See http://www.ams.org/mathscinet/collaborationDistance.html.
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it has to make best-effort decisions. The routing tables should be small and routing decisions
quick [DBCP97] while paths remain short.

Distance approximations for networks may be of interest for end users as well. If a sender
can choose among different destinations, for example before downloading a large file from one of
several replicated servers holding the same data, it is beneficial to predict the round trip time for
each of the servers prior to actually communicating. This proximity estimate helps choosing the
optimal server and connection [NZ02, DCKM04].

Conclusion

The numerous applications of point-to-point shortest path query processing make the following
claim easy to believe. The organizers of the DIMACS implementation challenge on shortest paths,
Demetrescu, Goldberg, and Johnson [DGJ08], state that

... shortest path problems are among the most fundamental combinatorial optimiza-
tion problems with many applications, both direct and as subroutines in other com-
binatorial optimization algorithms. Algorithms for these problems have been studied
since the 1950’s and still remain an active area of research.

This thesis investigates the tradeoffs between pre-computation time, storage, query time, and
approximation quality — both from a theoretical and a practical point of view.

1.3 Contribution

Theory and Practice. Both of these English words come from the Greek language,
and their root meanings are instructive. The Greek θεωρία means seeing or viewing,
while πρακτική means doing, performing. [...] Theory and practice are not mutually
exclusive; they are intimately connected. They live together and support each other.

Donald Knuth [Knu89]

This thesis aims to contribute to both the theoretical and the practical side of the shortest
path and distance query problems. The main contributions are summarized in the following. The
precise statements are deferred to subsequent chapters.

Theoretical

Space lower bound

The first main contribution is a theoretical analysis of the space requirements for data structures
that assist shortest path queries. Given is a graph with n nodes. A preprocessing algorithm com-
putes a data structure of size S. If an algorithm computes approximate shortest paths with multi-
plicative stretch at most α, it must access the data structure at a certain number t of locations of
the data structure. This three-way tradeoff between size S, stretch α, and query time t is analyzed
in Chapter 4.

This result was achieved in joint work with Elad Verbin and Wei Yu. An extended abstract was
published in the proceedings of the 50th Annual Symposium on Foundations of Computer Science
(FOCS) [SVY09].
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Time and space upper bounds for power-law graphs

One class of graphs that appears to be very common in real-world networks is the class of power-
law graphs: the node degrees obey a power law, which roughly means that there are many nodes
with few neighbors and only a few nodes with many neighbors. One property of these graphs
is that shortest paths often pass through nodes with many neighbors. This property allows for
efficient data structures. Routing through nodes with large degrees is a natural and very common
heuristic. Empirical evidence indicates that it is also a powerful heuristic in practice. We make
an attempt to bridge the gap between theory and practice by a rigorous efficiency proof of this
heuristic for certain random power-law graphs. Details are in Chapter 5.

This result was achieved in joint work with Wei Chen, Shang-Hua Teng, and Yajun Wang.
An extended abstract was published in the proceedings of the 23rd International Symposium
on Distributed Computing (DISC) [CSTW09a]. The full version is available as a technical re-
port [CSTW09b].

Practical

A third contribution of this thesis is an efficient practical method (with theoretical guarantees)
to compute approximate shortest paths in undirected graphs. The preprocessing step consists of
computing the analogue of a Voronoi dual for graphs and the query step consists of searching a
shortest path in the dual and refining it in the original graph (primal). Compared to many existing
practical methods, the method described in Chapter 6 computes approximate shortest paths but it
also works for graphs other than road networks (such as complex networks).

This result was achieved in joint work with Shinichi Honiden, Michael E. Houle, and Martin
Wolff. An extended abstract was published in the proceedings of the 6th Annual International
Symposium on Voronoi Diagrams in Science and Engineering (ISVD) [HHSW09]. An outdated
version is available as a technical report [SHWH08].

1.4 Outline

This thesis is organized as follows. Chapter 2 contains preliminaries such as various definitions
from graph theory and a review of shortest path algorithms for the single source and the all pairs
shortest path problems. Related work considering the shortest path query problem is reviewed
in Chapter 3. Chapters 4, 5, and 6 contain the main contributions of this thesis, as outlined in
Section 1.3.
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I never commit to memory anything that
can easily be looked up in a book.

Albert Einstein (1879–1975) 2
Preliminaries

This chapter consists of (1) a list of necessary definitions from graph theory and algorithmics, and
(2) a review of work related to the shortest path problem in graphs. A detailed review of shortest
path query processing is postponed to Chapter 3.

We use the following convenient notation throughout the thesis. For n ∈ N+, we define
[n] := {1, 2, . . . n}. Unless stated otherwise, lg denotes the logarithm with base 2. poly(x) means
a polynomial in x of unspecified constant degree. We write modular congruences by p ≡q r and
p = r mod q.

2.1 Graphs

A graph is a collection of entities (nodes) linked by some relationship (edges).

Definition 1. A graph G is a pair G = (V,E) consisting of a set of nodes V and a set of edges
E ⊆

(V
2

)
.

Nodes are also referred to as vertices.

Definition 2. A graph G′ = (V ′, E′) is a subgraph of G = (V,E), if V ′ ⊆ V and E′ ⊆ E. An
induced subgraph is a subset of the vertices of a graph together with any edges whose endpoints
are both in this subset.

Definition 3. Two nodes u, v ∈ V of a graph G = (V,E) are called adjacent if there is an edge
between u and v, that is, {u, v} ∈ E. For a graph G = (V,E), the set of neighbors of a vertex v,
denoted by ΓG(v), is defined as the set of nodes adjacent to v, that is, ΓG(v) := {u : {u, v} ∈ E}.

For a set of nodes U ⊆ V , let ΓG(U) :=
⋃

u∈U
ΓG(u).

Definition 4. For a graph G = (V,E), the degree of a vertex v, denoted by degG(v), is defined
as the number of its neighbors, that is, degG(v) := |ΓG(v)|.

If the graph G is clear from the context, we omit subscripts. For example, we write the set of
neighbors and the degree of a node by Γ(v) and deg(v), respectively.

A graph is called r–regular if all vertices have degree r.
The sum of all node degrees divided by two equals the number of edges:

∑

v∈V

deg(v) = 2 · |E|.
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In this thesis, if not stated otherwise, we consider undirected graphs (as in Definition 1). In
some networks, relationships between entities are inherently directed, for example one-way streets
in road networks or hyperlinks in the World Wide Web. Directed graphs can be used to model these
networks.

Definition 5. A directed graph (digraph) D is a pair D = (V,A) consisting of a set of nodes V
and a set of edges (also called arcs) A ⊆ V × V .

For digraphs, we may distinguish between in-neighbors and out-neighbors.

Definition 6. For a digraph D = (V,E), the set of in-neighbors of a vertex v is defined as
Γ−D(v) := {u : (u, v) ∈ E}, and its set of out-neighbors is defined as Γ+

D(v) := {u : (v, u) ∈ E}.
We define the neighbors of a vertex v as the union of the set of in-neighbors and the set of out-
neighbors, ΓD(v) := Γ−D(v) ∪ Γ+

D(v). Its in-degree is deg−D(v) := |Γ−D(v)| and its out-degree is
deg+

D(v) := |Γ+
D(v)|.

Note that degD(v) ! deg−D(v) + deg+
D(v) and equality does not necessarily hold. We may

again omit the subscript if D is clear from the context.
Weighted graphs also capture relationships of different cost, length, and strength. In what

follows, we only consider edge-weighted graphs (as opposed to node-weighted graphs). We may
still restrict the edge weights to 1, which yields an unweighted graph.

Definition 7. An edge-weighted graph (digraph) is a graph (digraph) associated with a weight
function w : E → R.

An edge weight can be interpreted as representing a value in the real world such as distance,
time, cost, penalty, or loss. In the following, if not stated otherwise, we shall only consider weight
functions with positive range, that is, w : E → R+. This explicitly excludes edges with weight
0. This is no restriction, since we may just contract (definition below) edges with weight 0, which
yields a single vertex instead.

Definition 8. A path in G from a node u0 to a node uh is a sequence of (undirected or directed)
edges ((u0, u1), (u1, u2), . . . , (uh−1, uh)). We also interpret such a path as a node sequence
(u0, u1, . . . , uh), as a node set {u0, u1, . . . , uh}, or as a subgraph, when this simplifies the no-
tation. The length of a path P is the sum of its edge weights +(P ) :=

∑h−1
i=0 w(ui, ui+1). The

hop-length of a path P is the number of edges h on P .

Note that for any path of an unweighted graph, the hop-length and the path length are equal.

Definition 9. A subpath P ′ of a path P = (u0, u1, . . . uh) is a path constructed from a subse-
quence of nodes P ′ = (ui, ui+1, . . . uj), 0 ! i < j ! h. A simple path is a path without repeated
vertices. Two paths are called vertex-disjoint if they do not have any vertices in common except
for, possibly, the endpoints.

Distances in graphs are computed based on the shortest path metric.1

1This connection to metrics is one reason to restrict the range of the edge-weight function w(·) to R+ and the
graphs to undirected. This thesis does not heavily rely on the general concepts of a metric space but since metrics
are inherently designed to measure distance, we briefly outline the basic definition. A metric space is a set for whose
elements a distance (called a metric) is defined. This distance metric is supposed to satisfy three conditions:

1. d(x, y) = 0 if and only if x = y,
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Definition 10. Let PG(u, v) denote the set of paths from u to v in G. The distance dG(u, v)
between two nodes u, v is the length of a shortest path from u to v; that is,

dG(u, v) = min
P∈PG(u,v)

+(P ).

If PG(u, v) = ∅ then dG(u, v) := ∞. The distance dG(u, V ′) between a node u and a subset of
the nodes V ′ ⊆ V is defined as dG(u, V ′) := min

v∈V ′
dG(u, v). The distance between two subsets of

the nodes U ′, V ′ ⊆ V is defined as min
u∈U ′

dG(u, V ′).

If unique shortest paths are needed, one may perturb the edge weights by adding random
infinitesimal weights2 [MVV87, EHP04].

Definition 11. An undirected graph G = (V,E) is connected if dG(u, v) is finite for all u, v ∈ V .
A directed graph D = (V ′, A) is connected if for all u, v ∈ V ′ at least one of dD(u, v) and
dD(v, u) is finite. A directed graph D = (V ′, A) is strongly connected if for all u, v ∈ V ′ both
dD(u, v) and dD(v, u) are finite.

The (strongly) connected components of a graph can be extracted efficiently [CLRS01, Sec-
tion 22.5].

Definition 12. A cycle is a path where both endpoints coincide. A cycle is thus a node sequence
(u0, u1, . . . , uh) for which (ui, ui+1) ∈ E for all i ∈ {0, 1, . . . h− 1} and u0 = uh. The length of
a cycle is defined as the number of edges h " 3.

A cycle of length 3 is also called triangle.

Definition 13. In a graph G = (V,E), the open ball with radius r around v ∈ V is defined by

Br
G(v) := {u ∈ V : dG(v, u) < r}

Accordingly, the closed ball with radius r is defined by Br+ε
G (v) := {u ∈ V : dG(v, u) ! r}.

The open (closed) ball relative to a subset of the nodes U ⊆ V is defined as the open (closed)
ball with radius d(v, U).

Definition 14. Define the multiplicative stretch of a path P from s to t *= s relative to the distance
from s to t as the ratio +(P )/dG(s, t) and define the additive stretch as the difference +(P ) −
dG(s, t).

The stretch of a path is also called distortion.

2. symmetry: d(x, y) = d(y, x), and

3. the triangle inequality: d(x, z) ! d(x, y) + d(y, z).

These conditions also imply non-negativity d(x, y) " 0. Let "dim
p denote the Euclidean space of dimension dim,

denoted by Rdim, equipped with the "p–norm. For 1 ! p ! ∞, the "p–norm on a dim–dimensional space is defined as

||#x||p := p

qPdim
i=1 |xi|p, set ||#x||∞ := maxi |xi|.

2The isolation lemma [MVV87] states that, for a finite set of distinct weights w(e1),w(e2), . . .w(e|E|), any col-
lection of subsets of weights has a unique minimum with probability at least 1/2. Edge weights can be made unique by
adding infinitesimal weights. Define w′(e) := w(e) + ε · ι(e), where ι(e) for each edge e is chosen independently at
random from [n2] = {1, 2, . . . n2}.
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2.1.1 Graph Properties

Definition 15. The diameter diam(G) of a graph G = (V,E) is the maximum distance between
two vertices:

diam(G) := max
u,v∈V

dG(u, v).

We define the empty graph to have infinite diameter and the graph with one vertex to have zero
diameter. All other graphs have a diameter in R+ ∪ {∞}. We usually abbreviate ∆ = diam(G)
when G is clear from the context.

Definition 16. The radius of a graph G = (V,E) is the least r such that there is a vertex v whose
closed ball Br+ε

G (v) covers all vertices.

Definition 17 (Girth). The girth of a graph G = (V,E), denoted by g(G) is the length of its
shortest cycle.

A connected undirected graph without cycles is called a tree. A tree with n nodes has exactly
n− 1 edges. An undirected graph without cycles (but not necessarily connected) is called a forest.
Since there are no cycles in trees and forests, these graphs have infinite girth. A subgraph that is a
tree on all nodes is called a spanning tree.

The tree-width of a graph was introduced by Halin [Hal76], but it went unnoticed until it
was rediscovered by Robertson and Seymour [RS86] and, independently, by Arnborg and Prosku-
rowski [AP89]. The tree-width of a graph is defined as follows.

Definition 18. Let G be a graph, T a tree and let V = {Vt ⊆ V (G) | t ∈ V (T )} be a family of
vertex sets of G indexed by the vertices t of T . The pair (T,V) is called a tree-decomposition of
G if it satisfies the following three conditions:

• V (G) =
⋃

t∈T Vt

• for every edge e ∈ G there exists a t ∈ T such that both ends of e lie in Vt

• If t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′, then Vt ∩ Vt′′ ⊆ Vt′ .

The width of (T,V) is the number max{|Vt| − 1 | t ∈ T} and the tree-width tw(G) of G is the
minimum width of any tree-decomposition of G.

Definition 19 (Doubling Dimension). The doubling dimension (also: Assouad dimension [Ass83])
of a graph is the minimum dim such that any ball of radius r can be covered by at most 2dim balls
of radius r/2.

A metric with diameter ∆ and doubling dimension dim has at most ∆O(dim) points

Definition 20 (Edge Contraction). In an undirected graph G = (V,E), the contraction of an edge
e = {u, v} with endpoints u and v is the replacement of u and v by a single vertex u′ such that
the edges incident to the new vertex u′ are the edges other than e that were incident with u or v.

Definition 21 (Graph Minor [RS83]). A graph H is a minor of a graph G if a copy of H can be
obtained from G via repeated edge deletion and/or edge contraction.
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Graph Class Excluded Minor
trees K3

series-parallel K4

outerplanar K4 and K2,3

planar K5 and K3,3

Table 2.1: Examples of minor-free graph classes.

2.1.2 Graph Classes

A bipartite graph is a set of graph vertices decomposed into two disjoint sets such that no two
graph vertices within the same set are adjacent. All forests are bipartite.

Definition 22. A graph G is planar if it can be drawn in the plane such that the edges are repre-
sented by line intervals and do not intersect in their interiors.

There is a famous statement by Leonhard Euler, stating that planar graphs with n " 3 nodes
have at most 3n − 6 edges. If a graph only has few edges (m ! n · poly(lg n)), it is called
sparse. Often, algorithms run faster on sparse graphs. However, sparsity alone does not necessarily
imply that a graph is an ‘easy’ instance for an algorithm. Besides sparsity, planar graphs have
other special structural properties that allow for efficient algorithms: planar graphs can be cut
into different pieces without cutting too many edges (the planar separator theorem captures this
property, see Theorem 4 in a subsequent section).

Outerplanar graphs are the “easiest” planar graphs.

Definition 23. An outerplanar graph is a planar graph that can be embedded in the plane such
that all nodes lie on one face.

A planar graph can be efficiently decomposed into outerplanar subgraphs (called hammocks)
[Fre91, Fre95, KPSZ96]. The number of hammocks required induces a hierarchy on the class of
planar graphs.

Often, graphs modeling practical networks are ‘almost’ planar. The planarity property has
been extended in several ways.

Planar graphs require the existence of an embedding in the plane without any two edges cross-
ing. This can be generalized to orientable surfaces of larger genus (for example genus 0 is a plane
and genus 1 is a torus). If the genus is restricted to a constant, these graphs are called bounded-
genus graphs.

Graphs characterized by forbidden minors [RS83] are another special class of graphs. A graph
belongs to a minor-closed family if and only if it does not have a minor from a certain specified
list. Some examples are given in Table 2.1. All graphs in these classes characterized by a finite set
of forbidden minors are sparse.

Definition 24. The thickness of a graph G = (V,E) is the minimum number θ of planar subgraphs

G1 = (V,E1), G2 = (V,E2), . . . Gθ(V,Eθ) such that E =
θ⋃

i=1
Ei.

There is literally a class of graphs called bounded X graphs for any of the aforementioned
properties X, where the corresponding property is bounded by a constant O(1). For example:
bounded-degree graphs are graphs in which the degree of each vertex is bounded by a constant.
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Another example class is the class of graphs with bounded tree-width (Definition 18). The tree-
width is a good measure of the algorithmic tractability of graphs. It is known that a number of hard
problems on graphs can be solved efficiently when the given graph has small tree-width [AP89].
A graph has tree-width 1 if and only if it is a forest, and families of graphs with tree-width at most
2 include outer-planar graphs and series-parallel graphs.

A ball graph is an intersection graph of balls in Rdim. It consists of n balls with centers vi and
radii ri. Two centers vi, vj are connected in the intersection graph iff their balls intersect in Rdim.
A disk graph is a ball graph with dim = 2. In unit-disk and unit-ball graphs, all radii are equal.
The class of disk graphs contains the class of planar graphs [Koe36].

2.1.3 Synthetic Graph Models

Ideally, an algorithm would work well for all instances. However, more often than not, one can
construct an adversarial graph (also termed worst-case graph) for which certain algorithms show a
very bad performance. Almost ideally, an algorithm would work well for all practical instances, or
at least for a typical (average) instance. Even though many datasets are made public these days,3

the number of available real-world networks is still rather limited. Furthermore, the algorithm
designer may not know in advance which graph the user will work with. From a theoretical
perspective, creating an algorithm for one particular graph instance is trivial: since code size is
not measured and evaluated, all solutions can be encoded in advance. Instead, we often evaluate
algorithms on certain restricted classes of graphs (see Section 2.1.2). Many real-world networks,
however, do not fall into any of these classes.

A large branch of research investigates models of the real world. Since we wish to capture the
essential features of multiple networks, the models have some degree of freedom, which is often
modeled by randomness. In some random graphs [ER60, Gil59, Bol01] for example each possible
edge is in the graph with probability p. In general, these models may help to understand charac-
teristics of certain real-world networks but also to evaluate and test [ASS09] the performance of
algorithms. 4

In the following we briefly review models for the networks discussed in this thesis: road
networks and complex networks.

Road Networks

Often planar graphs are used to model road networks.
Eppstein and Goodrich [EG08] and Eppstein et al. [EGS09] explicitly state that road networks

are non-planar. Instead, they use a model called multiscale-dispersed graphs, formalized in terms
of disk graphs (which contain planar graphs [Koe36]). They prove that these networks have small
separators (see also Theorem 4 in a subsequent section), which can be found efficiently.

Abraham et al. [AFGW10] introduce the notion of highway dimension, which means that for
every radius r > 0, there is a small set of vertices Sr, which all shortest paths of length greater
than r pass through.

3There are even online platforms to trade datasets, for example infochimps.org
4Another approach to evaluate the average-case performance of algorithms and to generate test instances is to collect

many real-world graphs and perturb edge weights at random [Iri92].
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Network Degree distribution Example Model
Single-scale Gaussian or expo-

nential
Erdős-Rényi
[Gil59, ER60]

Scale-free Power law Metabolic net-
works, food webs,
Web graphs, and
numerous others

Pref. attach-
ment [BA99];
fixed (exp.) de-
gree sequence
[BBK72, ACL00]

Broad-scale Power-law distrib.
with sharp ‘cut-off’
(decay of the tail)

Movie actor

Table 2.2: Complex networks of different scales [ASBS00]

Complex Networks

Complex networks at first appear not to have any particular structure — this is why they are
called complex. For the moment, let us focus on the degree distribution. Amaral et al. [ASBS00]
distinguish three classes of networks based on their degree distribution: single-scale, scale-free,
and broad-scale networks (see Table 2.2).

Single-Scale Networks. Erdős-Rényi random graphs [ER60, Gil59] have been studied inten-
sively for more than 50 years. There are two common models for undirected graphs with n nodes.
In the Gn,p model, each of the

(n
2

)
edges is in the graph independently at random with probability

p. In the Gn,M model, all graphs with n nodes and M edges have the same probability. Many
properties of Erdős-Rényi graphs are well understood. For example, the Gn,p random graph with
edge probability p proportional to n1/d (where d denotes an integer) has diameter at most d + 1
with high probability [Bol01]. For more results we refer to [Bol01]. Erdős-Rényi graphs serve
as suitable probability distributions for the average-case analysis of many algorithms. However,
graphs with power-law degree distribution are very unlikely in the Erdős-Rényi random graph dis-
tribution. Since many real-world networks do have power-law degree distributions, researchers
also consider other random graph models.

Scale-Free Networks. The node degree sequence of scale-free graphs obeys a power law [Mit03,
New05, CSN07]. Power-law distributions are referred to as scale-free distributions, since they look
the same on any scale. Mathematically speaking, a power-law degree distribution is defined as fol-
lows: the probability that a node has degree x is proportional to x−τ for some τ , which is called
the power-law exponent. For most practical scenarios, the power-law exponent lies in the interval
2 < τ < 3. These inequalities are assumed to hold in the following. Formally, a degree sequence
obeys a power law if Pr[deg(v) = x] = C · x−τ for some constant C. The expected degree can
be computed as follows.

E [deg(v)] =
n−1∑

x=1

x · Pr[deg(v) = x] !
∞∫

1

Cx−τ+1dx =
C

τ − 2

!" #$2.1
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For constant values of C, the expected number of edges is linear, which makes scale-free networks
sparse. The power-law degree sequence is just one important feature of many real-world complex
networks. Another characteristic is that distances are very short. This characteristic is called the
small world effect.

Two broad classes of network models [BS05, Mit03, CF06, TGJ+02] are distinguished based
on the method the graphs are generated with. In pure random graphs, the number of nodes and
the parameters are set at the beginning and then all the edges are generated. These models are
satisfactory to analyze complex networks but they do not explain the reasons for the scale-free
nature of complex networks. In random evolving graphs, the graph is generated by a random
process that adds node by node to the graph and connects the new node at random to the existing
graph. This process can be stopped at any time. For a generated graph by either model, let n
denote the number of nodes. The details for the different models vary greatly. Commonalities
other than the power-law degree sequence are that, usually, the diameter is proportional to lg n
and the average distance is proportional to lg lg n. The goal is to find a model that is both realistic
and easy to work with.

The configuration model [BBK72, RN04b] works as follows: we specify a degree sequence
,d := (d1, . . . dn). The edges are generated such that all graphs G = (V,E) with ∀vi ∈ V :
deg(vi) = di have the same probability. Where in the Erdős-Rényi random graph model all edges
were independent, the edges in the configuration model are dependent. Once an edge between two
vertices vi, vj has been assigned, the potential of both u and v to acquire more edges decreases by
1. Note that, for a degree sequence ,d to be realizable as a graph, there are some conditions on ,d

such as
n∑

i=1
di must be even and others [EG60, Hak62].

In the fixed expected degree random graph model [ACL00, CL02, NR06], edges are indepen-
dent. We again specify a sequence ,w := (w1, . . . wn). For this model, wi is interpreted as the
expected degree of vi. Each edge {vi, vj} is in the graph independently at random with probability
wiwjP

k wk
. Note that it is required to restrict ,w such that ∀i, j : wiwj ! ∑

k wk. In Chapter 5, we use
an adapted version of this model to analyze distance oracles for random power-law graphs.

In the re-wired lattice model [BMST97, NW99, Kle00], each vertex is connected to all of
its neighbors within constant distance by an undirected edge. In addition, a number of shortcuts
(long-range links) are added between randomly chosen pairs of nodes. In a variant, instead of
adding edges, some of the connections to neighbors are removed and “re-wired” to random nodes.

In affiliation networks [LS09], we start with a bipartite graph. The nodeset is divided into
actor nodes and affiliation nodes. Each node representing an actor is connected to certain nodes
representing affiliations such as companies, orchestras, and sports clubs. Then, the bipartite graph
is “unfolded” into a social network, which consists of actor nodes only; edges are generated such
that two actors connected by a path of length 2 in the affiliation graph get connected in the social
network.

In the preferential attachment model [BA99, DMS00], the network is growing in time in such
a way that new vertices are more likely to be connected to vertices that already have a high degree.
A new vertex connects to a node with degree di with probability diP

k dk
. This model offers a

convincing explanation for the emergence of scale-free networks. The copy model [KRR+00] is
in some sense a variant of the preferential attachment model, where a new node, upon generation,
copies a fraction of the links of a random node.
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2.2 Graph Algorithms

Graph algorithms is a research field at the intersection between graph theory and computer science.
We are interested in (efficiently) computing certain properties of graphs. An algorithm, given a
graph G = (V,E) and optional inputs such as subsets of the nodeset or edgeset or constants,
decides or computes certain properties of G. Decision problems are those questions for which
the answer is “yes” or “no.” Optimization problems are the questions for which the solution is a
subgraph, potentially ordered, minimizing or maximizing an objective function.

The efficiency of algorithms is of integral interest.

For practical purposes computational details are vital. However, my purpose is only
to show as attractively as I can that there is an efficient algorithm. According to the
dictionary, “efficient” means “adequate in operation or performance.” This is roughly
the meaning I want.

Jack Edmonds [Edm65]

Suppose that we want to evaluate an algorithm for a problem. Objective evaluation criteria
include the quality of the result (correctness, exactness, approximation quality), the computing
time (also: time complexity), measured in terms of the input size, and the memory consumption
(also: space complexity), again measured relative to the input size. For graph algorithms, the
input consists of a graph G = (V,E) and optional parameters. Unless stated otherwise, n := |V |
denotes the number of nodes and m := |E| denotes the number of edges. An important aspect
in the evaluation of an algorithm is its scalability. For theoretical work, scalability means the
asymptotic behavior of an algorithm in terms of n and m. Let fA(n, m) denote the least upper
bound on the cost of applying algorithm A to graphs with n nodes and m edges. It is claimed
that a constant number of instructions every now and then does not influence the running time too
much. It is often also convenient not to analyze these constant overheads in great detail. This is
captured in the Bachmann-Landau [Bac94, Lan09] O–notation [CLRS01, Chapter 3]. We say that
the running time of an algorithm is (in) O(g(n, m)), meaning that the actual running time as a
function fA(n, m) increases, or grows, at most proportionally to g(n, m), ignoring the exact value
fA(n, m). The precise definitions of the O–notation are listed in Table 2.3.

Notation Definition
f(n) ∈ O(g(n)) ∃n0, c1, c2 such that ∀n > n0 : c1 · g(n) + c2 " f(n)
f(n) ∈ o(g(n)) ∃n0, c1, c2 such that ∀n > n0 : c1 · g(n) + c2 > f(n)
f(n) ∈ Ω(g(n)) g(n) ∈ O(f(n))
f(n) ∈ ω(g(n)) g(n) ∈ o(f(n))
f(n) ∈ Θ(g(n)) f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n))
f(n) ∈ Õ(g(n)) ∃c′ such that f(n) ∈ O(g(n) · lgc′ n)

Table 2.3: O–notation for the asymptotic behavior of functions f, g.

Computational problems are classified according to their difficulty, which is defined by the
existence of an algorithm running in a certain time. The class of decision problems for which
there exists an algorithm that outputs the correct answer in time O(poly(n)) is called P. The
class of decision problems for which there exists an algorithm that, given some evidence, verifies
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the correct answer in time O(poly(n)) is called NP. The complexity classes P and NP are only
mentioned in some parts of the chapter on related work, but profound knowledge on the P vs. NP
problem is not essential to understand this thesis. For more on computational complexity theory,
we refer to [GJ90].

2.2.1 Computational Models

Time and space complexities are measured differently depending on the machine model [vEB90].
The traditional model of computation consists of a Turing machine [Tur37], which is a state ma-
chine operating on an infinite tape divided into cells. In the word RAM model [CR73] with integral
word length w " 1, the contents of all memory cells are integers in the range {0, . . . , 2w − 1} and
operations such as addition, subtraction, bit shifts, and bit-wise boolean operations are assumed
to be executable in constant time (analogous to programming languages such as C). This model
often allows for fast algorithms (faster compared to addition/comparison models by a logarithmic
factor) if for example the edge weights are integers and the largest integer weight W satisfies
W ! 2w − 1. This model is often used for upper bounds on the time complexity of a specific
algorithm.

For lower bounds on the time complexity of any algorithm, the related cell-probe model is
very common.

Definition 25 (Cell-probe model [Yao81, Mil99]). In the cell-probe model, a memory cell has
w bits (also called word length) and the space of a data structure is measured as the number of
cells it occupies, denoted by S. The query time is measured by the worst-case number of cells t
that a query reads.

Both for the word RAM and the cell-probe model, the most typical values for the word length
are w = lg n or w = polylog(n) = poly(lg n), but larger (or smaller) values may be interesting
as well.

For problems involving huge data sets, often I/O is the bottleneck of computations. The data
does not fit into main memory; instead it is read block by block from disk. To analyze external
memory algorithms [AV88, VS94], often a cell-probe-like model is used for upper bounds as well.
Operations may read a block of size B into main memory of size M .

2.2.2 Approximation Algorithms

For certain optimization problems, the optimal solution with respect to an objective function is
hard to compute. Often the computation of a ‘close-to-optimal’ solution can be done much faster.
An approximate solution may still be acceptable if the quality of the solution is sufficiently good.
The quality is measured as follows. Let OPT denote the value of an optimal solution (as deemed
by the objective function) and let ALG denote the value of the solution the algorithm returned.
We say that the algorithm has approximation quality (α, β) if the inequalities (2.2) hold for all
allowed inputs. The approximation quality is thus a worst-case measure.

OPT ! ALG ! α · OPT + β
!" #$2.2

(Note that this definition is tailored to minimization problems and in particular to the shortest path
problem.)

In the case of distances, this approximation quality is also called stretch or distortion. Let
d̃(u, v) denote the result of the approximation algorithm when asked for the distance between u
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and v. For an algorithm computing (α, β)–approximate distances, for all u, v ∈ V , the result must
satisfy

dG(u, v) ! d̃(u, v) ! α · dG(u, v) + β.

(The combination of multiplicative and additive stretch only makes sense for multiple node
pairs. For a single path we consider either its multiplicative or its additive stretch (Definition 14).)

2.3 Common Techniques

This section consists of a non-exhaustive list of techniques that are commonly used to solve prob-
lems related to shortest paths.

2.3.1 Spanners and Emulators

For most graph algorithms, the performance depends on the number of nodes and edges of the
input graph. The running time can potentially be reduced by altering the graph, in particular by
adding or deleting edges. After altering the graph, we wish that the answer to the question we ask
concerning the graph (in our case the distances between nodes) does not change by much. When
edges are deleted only, we obtain a subgraph, which, if it preserves distances to a certain extent, is
called a spanner [PS89, ADD+93, Coh98, DHZ00, Kor01, BCE03, EP04, TZ06, Pet07, Elk08a,
Elk08b, BS08].

Definition 26 ((Graph) Spanner). An (α, β)–spanner of a graph G = (V,E) is a subgraph G′ =
(V,E′) that approximately preserves distances such that for all pairs of nodes (u, v) ∈ V × V ,

dG(u, v) ! dG′(u, v) ! α · dG(u, v) + β.

We say that this spanner has stretch (or distortion) (α, β).
Spanners are useful in various applications such as constructing routing tables, where the edges

of a subgraph are used to route messages, and computing approximate shortest paths.
The more edges we delete, the smaller the input size for the next algorithm, the faster the

running time. The amount of edges we can delete before some distances change substantially
often depends on the girth of the graph. Recall that the girth of a graph is the length of its shortest
cycle (Definition 17). Intuitively, if there are short cycles, we may delete an edge of a cycle, since
for a shortest path using this edge, there is an alternative, reasonably short path using the cycle. If
there are no short cycles, there is no alternative short path; the redundancy is low and the deletion
of an edge may cause a large distortion.

Let mg(n) denote the maximum number of edges in a graph with n vertices and girth at least g.

Theorem 1 (Althöfer et al. [ADD+93]). For any integer α " 3, every graph G = (V,E) on
|V | = n vertices has a spanner with stretch (α, 0) and mα+2(n) edges.

Their construction uses a greedy algorithm (similar to Kruskal’s algorithm to construct a min-
imum spanning tree [CLRS01, p. 568]). The upper bound is actually tight. The corresponding
lower bound is not very difficult: in a graph with girth g = α + 2, removing any edge increases
the distance between its endpoints from 1 to at least α+1. The only multiplicative (α, 0)–spanner
is the graph itself.
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Since no edges can be removed from graphs with large girth without significantly altering dis-
tances, graphs with many edges (dense graphs) and large girth are important worst-case instances
for spanner and distance oracle constructions. In extremal combinatorics, determining mg(n) is a
research field of its own [EJ08, Big98, Hoo02]. For example, for g = 4 the question is the follow-
ing: how many edges can be added to the empty graph on n nodes without closing a triangle? In-
tuitively, the more edges that were already added, the harder it gets to add another one. For g = 4,
the complete bipartite graph is asymptotically optimal. For general g, the construction of the graph
is much more involved; for some g the value of mg(n) is not even known.5 Erdős’ girth conjec-
ture [Erd64, ES63] predicts that, for an integer k " 1, m2k+1(n) = m2k+2(n) = Ω(n1+1/k). The
corresponding upper bound is known to be tight [AHL02] and the conjectured lower bound is a
theorem for certain values of k (1, 2, 3, and 5); for an overview, see Table 2.4.

Girth |E| Reference
4 Θ(n2) complete bipartite graphs
6 Θ(n3/2) [Rei58, ERS66, Bro66, Wen91]
8 Θ(n4/3) [Tit59, Ben66, Wen91]
10 O(n5/4)

Ω(n6/5) [Tit59, Ben66, LU93]
12 Θ(n6/5) [Tit59, Ben66, Wen91, LU93]
14 O(n7/6)

Ω(n9/8) [LUW95, LUW96]
16 O(n8/7)

Ω(n10/9) [WU93, LUW95]
4r + 2 O(n

2r+1
2r )

Ω(n1+ 1
3r−1 ) [LUW95, LUW96]

4r O(n
2r

2r−1 )
Ω(n1+ 1

3r−3 ) [LUW95, LUW96]

Table 2.4: Results on Erdős’ girth conjecture, overview from [TZ05, Table II]. Maximum size of
the edge set E for a graph G = (V,E) with |V | = n nodes and given girth (length of a shortest
cycle, Def. 17).

For multiplicative spanners, the tradeoff between space and stretch is well understood. Not
so for spanners with additive stretch. Aingworth et al. [ACIM99] found a (1, 2)–spanner with
O(n3/2) edges and Baswana et al. [BKMP05] found a (1, 6)–spanner with O(n4/3) edges. Wood-
ruff [Woo06] gives a strong lower bound for additive graph spanners independent of Erdős’
girth conjecture. He proves that for an integer k = o

(
lg n

lg lg n

)
, there are graphs for which any

(1, 2k − 1)–spanner has Ω
(
n1+1/k/k

)
edges.

Recently [TZ06, Pet07], spanners with non-constant additive stretch β(·) are under investiga-
tion. For these spanners, β is required to be sublinear in d(u, v). We refer to the overview by
Pettie [Pet07, Fig. 2]. For a result on spanners for directed graphs, see [RTZ08].

Spanners are subgraphs. If we just care about distances and not about the actual paths, the
subgraph requirement may be too restrictive. Emulators are graphs restricted to the same nodeset

5For directed graphs, the problem seems to be even more involved [CH78, CS83].
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but not to the same edgeset.

Definition 27 (Emulator [DHZ00]). An edge-weighted graph F = (V,E′) (α, β)-emulates a
graph G = (V,E) if for every u, v ∈ V

dG(u, v) ! dF (u, v) ! α · dG(u, v) + β.

F is called an (α, β)–emulator.

Consequently, we say that such an emulator has stretch (α, β). Note that, for both spanners
and emulators, distances may only increase. Dor et al. [DHZ00] give a (1, 4)–emulator with
Õ(n4/3) edges. Thorup and Zwick [TZ06], for an arbitrary integer k " 2, construct emulators
with O(kn1+1/(2k−1)) edges (in expectation), such that for pairs with distance +, the distance in
the emulator is at most + + O(k+1−1/(k−1)). The lower bounds by Woodruff [Woo06] can be
extended to emulators as well.

2.3.2 Distance Labelings and Metric Embeddings

The objective of distance labelings is to assign each node of a graph a label such that the distance
(or an approximation thereof) between two nodes can be computed based on the corresponding
labels only [Pel00]. Such labelings are used in the real world to a certain extent. For example,
postal addresses include countries, cities, and street names, using which we can get an estimate of
how close two addresses are.6 The idea is formalized in the following definition.

Definition 28 (Distance Labeling [Pel00, GPPR04]). An (α, β)–approximate distance labeling
scheme for a graph G = (V,E) is an assignment of labels to nodes L : V → {0, 1}∗ such that
the estimated distance d̃(u, v) computed by the scheme from the labels L(v) and L(v) satisfies

dG(u, v) ! d̃(L(u), L(v)) ! α · dG(u, v) + β.

Distance labeling schemes with short labels are derivable for highly regular graph classes, such
as rings, meshes, and hypercubes. An interesting question is whether more general graph classes
can also be labeled in this fashion. For general graphs, it is known that any distance labeling
scheme must label some graphs with n vertices with labels of size Ω(n) [GP03b]. Even for planar
graphs, some nodes must have labels of size Ω(n1/3) [GPPR04].

If we restrict the function d̃(L(u), L(v)) to +p norms, we obtain embeddings [IM04, Lin02].
The idea is to map a metric space (here: the shortest path metric of a graph) into a simpler one,
in such a way that the distances between points do not change too much. More formally, an
embedding of a (weighted) graph G = (V,E,w) with distance function d into a target metric
space (V ′, d′) (where d′ denotes the distance function of this space) is a map ϕ : V → V ′. An
embedding with good distortion yields good approximation algorithms [Ind01].

The Johnson-Lindenstrauss Lemma can be used to reduce the number of dimensions of a
metric space without introducing a large error. It states that, for any +DIM

2 , a random linear mapping
into +dim

2 preserves distances up to a factor of 1 ± ε with probability at least 1 − e−ε2dim. More
precisely:

6Latitude and longitude coordinates would of course be more precise.

29



CHAPTER 2. PRELIMINARIES

Lemma 2 (Johnson and Lindenstrauss [JL84]). For any 0 < ε < 1 and any integer n, let dim be
a positive integer such that

dim " 4(ε2/2− ε3/3)−1 lnn.

Then for any set V of n points in RDIM there is a map f : RDIM → Rdim such that for all u, v ∈ V ,

(1− ε)||u− v||2 ! ||f(u)− f(v)||2 ! (1 + ε)||u− v||2.

The map f can be found in polynomial time.

We can thus project any n–dimensional Euclidean space to an O(lg n/ε2)–dimensional space
such that the distance between any two points changes by at most 1 ± ε. Such projections are
almost best possible: at least Ω(lg n/(−ε2 lg ε)) dimensions are needed [Alo03, Theorem 9.3].

We would like to generalize this result to all metric spaces, in particular to graphs and the
shortest path metric.

Theorem 3 (Bourgain [Bou85]). For every n–point metric space there exists an embedding into
Euclidean space (+2) with distortion (O(lg n), 0).

Also, this bound is tight [LLR95]. For the special case of planar graphs, the multiplicative
distortion is Θ(

√
lg n) [Rao99, NR03]. The optimal distortion of an embedding into a constant-

dimensional Euclidean space is hard to compute [MS08a].
Embedding a graph into a hypercube (wherein the +1 norm is computed as the Hamming

distance between coordinates) is another technique [Djo73]. The Squashed Cube Conjecture by
Graham and Pollak [GP72], proven by Winkler [Win83] implies an exact distance labeling scheme
with labels of size n lg2 3. Note that computing the Hamming distance takes time proportional to
the label size.

2.3.3 Planar Graph Techniques

Separators

A powerful approach when designing an algorithm is to use divide & conquer: we split the prob-
lem at hand into a bunch of smaller problems, solve these, and then combine their solutions.
Ideally the sub-problems are completely independent such that the combination of their solutions
is straightforward. In general, the sub-problems are not independent. It is then crucial to cut the
problem into pieces with as few interdependencies as possible. For some problems, such a cutting
is indeed possible. Given an instance of the restricted class of planar graphs with n nodes, it is
known [LT80, AST94] that we can split the graph into two parts of roughly half the original size
separated by a rather small third set of nodes (with size O(

√
n)).

Theorem 4 (Lipton and Tarjan’s Planar Separator Theorem [LT80]). The n vertices of a planar
graph can be partitioned into three sets A, B, S such that

• no edge connects a vertex in A with a vertex in B,

• A and B each contain at most n/2 vertices, and

• S contains at most O(
√

n) vertices.
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Results for planar graphs often extend to other classes of graphs. The separator theorem has
been generalized to bounded-genus graphs by Gilbert et al. [GHT84] and to minor-free graphs by
Alon et al. [AST90].

Road networks, although non-planar (the networks may have many bridges and tunnels), often
also have structural properties that are similar to the ones for planar graphs. Most importantly,
they appear to have small separators as well [EG08].

Edge Orientability

The edge set of a simple undirected planar graph G = (V,E) can be oriented (denoted by Ĝ =
(V, Ê)) such that the out-degree of every vertex v satisfies deg+

Ĝ
(v) = O(1). The upper bound

on the degree can be chosen to be 3 [CE91]. Note that the nodes’ in-degrees deg−
Ĝ
(v) remain

unbounded.
Using this orientation, adjacency queries can be answered in constant time by inspecting both

nodes. This technique can be seen as a labeling [Bre66, KNR92]: each node gets a label of
size O(lg n) bits such that the adjacency of two nodes can be computed by looking at the two
corresponding labels only. The result on edge orientability extends to minor-free graphs [GL07].

2.3.4 Well-Separated Pairs

The well-separated pair decomposition by Callahan and Kosaraju [CK95] is important for algo-
rithms operating on point sets in Rdim. The corresponding definition for graphs is as follows. For
a graph G = (V,E) and a set A ⊆ V , let G(A) denote the subgraph induced by A.

Definition 29 (WSPD [CK95]). For a graph G = (V,E), two sets of nodes A, B ⊆ V are
ε–separated if max{diam(G(A)),diam(G(B))} ! ε · dG(A, B). For a parameter ε > 0, a well-
separated pair decomposition of a graph G is a set of s pairs W = {{A1, B1}, . . . {As, Bs}} such
that for all pairs u, v ∈ V

(u, v) ∈
s⋃

i=1

Ai ×Bi ∪Bi ×Ai,

and that for all i ∈ [s]

• Ai, Bi ⊂ V ,

• Ai ∩Bi = ∅, and

• Ai and Bi are ε–separated.

In other words, for any pair of nodes u, v ∈ V , there is exactly one pair {Ai, Bi} ∈ W such
that u ∈ Ai and v ∈ Bi.

2.4 Shortest Paths

Shortest paths should be of inherent interest to any lazy creature living on a sphere
like the surface of planet Earth.

Mikkel Thorup [Tho04a]
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Even in very primitive (even animal) societies, finding short paths and searching (for
instance, for food) is essential.

Alexander Schrijver [Sch05a, p. 1]

The distance between two nodes s, t ∈ V of a graph G = (V,E) is defined by the length
of a shortest path (Definitions 8 and 10). The objective is to find the shortest possible path that
connects the source and the target.

In this thesis, we restrict ourselves to unconstrained, (approximate) shortest paths in static, dis-
crete graphs with positive edge weights. For geometric shortest paths we refer to [Mit97, Che96]
(for motion planning see [Sha97b]). For paths on surfaces and meshes we refer to [MMP87,
ADG+06, VS09]. For the dynamic version of the problem we refer to [DI08, Ita08]. For time-
dependent weights, see [CH66, OR90, KS93a]. For SSSP algorithms on graphs with negative edge
weights, we refer to [GT89, Gol95, FR06].

We classify [DP84] the shortest path algorithms according to the problem type (single source,
all pairs, one pair), the graph class, and the techniques. We also refer to Schrijver’s book [Sch03,
Chapter 7], Pettie’s thesis [Pet03], and the surveys by Zwick [Zwi01] and Sen [Sen09]. The review
in this section is made with best efforts; however, the list of methods, algorithms, and techniques
is by far not complete.

2.4.1 Single Source Shortest Path (SSSP) Algorithms

For a brief overview, we refer to the Encyclopedia of Algorithms [Pet08b]. For a comprehensive
historical overview, we refer to Schrijver [Sch03, Section 7.5b]. The following outline is partially
based on Ahuja, Magnanti, and Orlin’s book [AMO93]. Historical information is from [Dre69,
GM77, DP84, Sch05a].

The Single Source Shortest Path (SSSP) problem asks for a shortest path from one node s ∈ V
(called the source) to all other nodes in V \{s}. In particular, after running a single source shortest
path algorithm, we know the distance from the source to all other nodes. After termination, each
node u ∈ V is labeled with d(s, u). At the beginning d(s, s) = 0 and all other labels are set
to ∞. SSSP algorithms iterate and assign tentative distance labels d̂(s, u) (upper bounds on the
true distance d(s, u) ! d̂(s, u)) at each step. We distinguish label-setting, label-correcting, and
other algorithms. In label-setting algorithms, each iteration “produces” one optimal label. This
property does not hold for label-correcting algorithms, for which all labels are optimal after the
final iteration only. Label-setting algorithms are restricted to non-negative lengths, but they often
have a better worst-case time complexity than label-correcting algorithms. Also, if we are inter-
ested in one particular target node t, it is possible to stop the algorithm as soon as the distance
label for t has been produced.

Label-Setting Algorithms

The most famous label-setting algorithm is Dijkstra’s algorithm [Dij59], see also [Sch03, Sec-
tion 7.2] or any algorithms textbook [CLRS01, p. 595] of your choice. The original implemen-
tation runs in time O(n2). According to an article on the history of combinatorial optimiza-
tion [Sch05a], the same or a similar algorithm has been proposed independently by Leyzorek et
al. [LGJ+57], Dantzig [Dan60], and Whiting and Hillier [WH60]; but it is known as Dijkstra’s al-
gorithm. The algorithm starts a search at the source. At each step, among the nodes with tentative
labels, the algorithm selects the node u with the shortest tentative distance d̂(s, u) and deems the
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label of u as permanent. Then, the algorithm updates the labels of all the neighbors of u if neces-
sary. That is, if a neighbor v ∈ Γ(u) has a tentative distance d̂(s, v) larger than d(s, u) + w(u, v),
its label is decreased. The algorithm does not need to backtrack: once a label is finalized, it is cor-
rect and it can never decrease. The computational bottleneck of the algorithm is the node selection:
we need to efficiently find the node u with the shortest tentative distance.

For this node selection step, sorting may be used [Joh72]. Dial [Dia69] proposes to maintain
sorted distances by using buckets. Let the weight function w : E → N+ be restricted to integers
and let W denote the largest integer weight. Dial’s implementation maintains buckets, which could
require a large amount of memory; the running time is O(m + nW ). Further improvements were
made by Wagner [Wag76], Dial et al. [DGKK79], and Denardo and Fox [DF79].

Another approach to efficient node selection is to use a priority queue, which is a data structure
we use to manage the nodes [Mur67a]. This data structure supports efficient operations to insert
an element, to retrieve the minimum element, to delete the minimum element, and to decrease
the value of an element in the queue. These are exactly the operations necessary for Dijkstra’s
algorithm. Each update of a label involves a queue operation. Using a binary heap as priority
queue, insertions, deletions, and decrease operations can be done in time O(lg n), which yields
time O(m lg n) for Dijkstra’s algorithm [Wil64]. For very dense graphs with m = ω

(
n2

lg n

)
edges

this running time is actually slower than the O(n2) running time of the original implementation,
but for sparse graphs the running time decreases significantly. Johnson [Joh77] uses a priority
queue with fixed depth to get running time O(m) for dense graphs (m = Ω(n1+ε) for some
ε > 0).

The faster the operations of the priority queue, the better the overall running time. Using a
d–heap, insertions and decrease operations take time O(lgd n) and deletions take time O(d lgd n),
which yields total running time O(m lgd n + nd lgd n). The optimal value for the parameter d is
d = max{2, 1m/n2}, which yields total running time O(m lgd n). The Fibonacci heap [FT87]
supports deletions in time O(lg n) and all the other operations in amortized constant time O(1),
which yields the currently best time bound of O(m + n lg n). Alternatively, one may use re-
laxed heaps [DGST88] or rank-pairing heaps [HST09], which are data structures with the same
performance guarantees.

If we restrict the range of the edge weight function w(·) to integers (or floats), better bounds
are possible by using special priority queues designed for the word RAM model (as defined in
Section 2.2.1). For an overview of the running times, see Table 2.5.

Component Hierarchy Algorithms

Sorting and priority queues are strongly related [Tho07]. For sorting, there is an information-
theoretic time lower bound of Ω(n lg n). To circumvent this bound, sorting must be avoided. An
SSSP algorithm is not actually required to sort the distances to all nodes. Indeed, the sorting
bottleneck can be avoided. Thorup [Tho99, Tho00a] gives an O(m) algorithm for undirected
graphs with integer or floating point weights. He first constructs a component hierarchy (in linear
time) and then revisits the nodes. Although the algorithm is theoretically best-possible, it appears
to be hard to implement and not very efficient in practice [AI00].

Hagerup [Hag00b] generalizes the idea of the component hierarchy to directed graphs, for
which his algorithm (using an analogue of minimum spanning trees for directed graphs) runs in
timeO(m lg lg W ). Actually, constructing the component hierarchy itself takes this time; an SSSP
search using the hierarchy requires time O(m + n lg lg n).

Pettie and Ramachandran [PR02] generalize the component hierarchy to real weights. For
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Time Reference
O(m lg n) [Wil64]
O(m + n lg n) [FT87, DGST88]
O(m lg lg W ) [Joh82, vEBKZ77]
O(m + n

√
lg W ) [AMOT90]

O(m
√

lg n) [FW93]
O(m + n lg n

lg lg n) [FW94]
O(m lg lg n) [Tho00b]
O(m + n lg1/2+ε n) [Tho00b]
O(m + n

√
lg n lg lg n) [Ram96b]

O(m + n lg1/3+ε n) [Ram97]
O(m + n lg lg n) [Tho04b]
O(m + n

√
lg lg n) [HT02]

Table 2.5: Running times for different implementations of Dijkstra’s algorithm. W denotes the
largest integer weight. The table is in large parts excerpted from [Tho99, p. 364]. The algorithms
in the first two rows work for both the comparison/addition model and the word RAM model. The
analysis of the algorithms shown in row 3 and below only works in the word RAM model.

real weights and undirected graphs, if the ratio of any two edge weights is polynomial in n, their
algorithm runs in time O(m + n lg lg n). Furthermore, the algorithm appears to be efficient in
practice as well [PRS02]. The algorithm’s idea is to enforce a certain degree of balance in the
component hierarchy and, when computing the SSSP, to use a specialized priority queue that
takes advantage of this balance [Pet08b]. Unfortunately, it has been found that a hierarchy-based
algorithm can not improve upon Dijkstra’s algorithm to run in o(n lg n) for general weights [PR02,
Pet04]. See also [Pet03, Section 3.6].

Note that the component hierarchy approach already captures a certain notion of having pre-
processing and query stages [AI00].

Label-Correcting Algorithms

In label-correcting algorithms, all distance labels are temporary and they are guaranteed to be
exact and optimal in the end only.7 Label-correcting algorithms can solve more general problems
(they can, for example, find a cycle with negative length) and they are more flexible — but they
are usually slower. Some version of the algorithm often solves the All-Pairs Shortest Path (APSP)
problem. It is actually unknown whether computing the result of a point-to-point shortest path
query is easier than computing APSP on arbitrarily weighted graphs.

The generic label-correcting algorithm runs in time O(min{n2mW, m2n}) [For56, Moo59,
FF58, GKP85, GKPS85]. There is an efficient FIFO implementation, which runs in time O(mn)
[Bel58] (the well-known Bellman-Ford algorithm [Bel67, For56] (for an outline, see also [CLRS01,
Chapter 24.1])) and a dequeue implementation running in time O(min{mnW, m2n}) but being
very efficient in practice [Pap74, Pap80, GP86, Ber93].

The Simplex algorithm can also be used to compute shortest paths [Orl83, Akg88, GHK90,
AO92, GJ99, SNGM09].

7This convergence behavior makes the correctness of an algorithm more difficult to prove.
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Restricted Graph Classes, Average-Case Analysis, Expected Running Times, and Practical
Considerations

Due to the importance of the shortest path problem, researchers have been interested in parallel al-
gorithms [Coh00, PK85, KS93b, KS96, BTZ98, TZ00, CMMS98, SS99, HTB01, MS03, SPZ06],
I/O–efficient algorithms [MZ08, MZ03, BFMZ04, JZ05, MZ06, ALZ07, MO09, Mey09], algo-
rithms for special graph classes such as planar graphs [Fre87, HKRS97], sparse graphs [GOY76,
Wag76], or Euclidean graphs [SV86], and in the expected performance (average-case analysis) of
algorithms [NMM78, Nos85, Mey03, Gol08, Hag06]. Also, comparisons [Dre69, ZN00] and ex-
perimental evaluation for practical purposes [Hit68, BH69, GW73, Pap74, Gol76, II84, IHI+94,
CGR96, ZN98, CGS99, JMN99, Shi00, Gol01, PRS02, DI04] have been an important part of
investigations.

Point-to-point shortest path problems have been considered early on [Min57, Dan60, Kle64,
Smo75]. In practice, point-to-point shortest path algorithms can be computed faster when bidirec-
tional search [Nic66, Boo67, Cha67, Mur67b, Poh71, SdC77, dC83] is used. For road networks, if
in addition to the graph the node coordinates are known, A* heuristics [Gel63, Sam63, KHI+86,
Dor67, HNR68, Gel77] based on geometry help to guide the search towards the target [SV86].
Approaches to the problem of computing shortest paths using an additional preprocessed data
structure are reviewed in Chapter 3.

2.4.2 All Pairs Shortest Path (APSP) Algorithms

In the following, we consider the static version of the APSP problem, which is for example sur-
veyed by Schrijver [Sch03] and Pettie [Pet08a]. For the dynamic version of the problem, we refer
to the Encyclopedia of Algorithms [DI08, Ita08]. We do not list parallel algorithms.

Given a graph G = (V,E), the All Pairs Shortest Paths (APSP) problem is to compute a
shortest path, respectively the distance, between all pairs of nodes s, t ∈ V . Since there are(n
2

)
= Θ(n2) pairs of nodes for which the distance needs to be output, the time complexity

must be at least Ω(n2). Strong lower bounds are hard to prove [YAR77, GYY80]. Kerr [Ker70]
and Nakamori [Nak72] give lower bounds for algorithms with restricted operations. Karger et
al. [KKP93] show that any algorithm based on path comparison must take time Ω(mn). For
general algorithms, the gap between the lower and the upper bound is huge.

Given an SSSP algorithm with running time S(n, m,W ), the straightforward approach to
solve APSP is to run the SSSP algorithm for each node. This approach yields a running time of
O(n·S(n, m,W )). For non-negative weights, we may use Dijkstra’s algorithm, which yields time
O(mn+n2 lg n). The algorithm of Johnson [Joh77] matches this bound also for negative weights
(by using Dijkstra’s algorithm [Dij59] and the Bellman-Ford algorithm [Bel67, For56]). For very
sparse graphs with m = O(n) edges, this is already best possible.

In practice, for sparse graphs, an initial graph decomposition step may potentially decrease the
total computation time [LS67, FLM67, KY65, Mil66, Hu68, HT69, Yen71, GKN74, LR82] (see
Figure 2.1). For some graphs we can save a few unnecessary operations by considering essential
edges only [KKP93, McG95]. Also, there are algorithms that are efficient on average [Spi73,
TM80, Blo83, FG85, MT87, MP97, MC09]. In both cases, the worst-case complexity does not
change.

The question is: can we do better for dense graphs (with algorithms not based on path com-
parison)? Label-correcting algorithms may help to improve the running time. The famous Floyd-
Warshall algorithm [Flo62, War62] is based on dynamic programming and it runs in time O(n3)
(see also [CLRS01, Section 25.2]). This is optimal if only triple operations on paths and edge
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Figure 2.1: Illustration of the network decomposition technique as originally depicted by Hu and
Torres [HT69, Figure 4].

costs are allowed [IN72]. Yen [Yen72, Yen73] and Moffat and Takaoka [MT84] further in-
vestigate the constants hidden in the O–notation. Fredman improves the time complexity to

O
(

n3
(

lg lg n
lg n

)1/3
)

[Fre76]. Based on Fredman’s algorithm, Takaoka [Tak92] improves the run-

ning time to O
(
n3

√
lg lg n
lg n

)
. Feder and Motwani [FM95] give an O

(
mn lg(n2/m)

lg n

)
–time algo-

rithm for weighted graphs and an O
(
n3 1

lg n

)
–time algorithm for unweighted graphs. Takaoka

gives an algorithm running in time O
(
n3 lg lg n

lg n

)
[Tak05]. For directed graphs with real edge

lengths, Zwick [Zwi06] gives an O
(
n3

√
lg lg n
lg n

)
–time algorithm. The algorithm of Chan [Cha07]

runs in time O
(
n3 lg lg n

lg2 n

)
. Blelloch et al. [BVW08] save a lg–factor compared to Feder and

Motwani [FM95]. They give the currently fastest combinatorial algorithm, which requires time
proportional to O

(
mn lg(n2/m)

lg2 n

)
. For an overview, see Table 2.6.

In forty years of research, “only” a logarithmic improvement in the running time has been
achieved. A combinatorial algorithm running in truly sub-cubic time would be a major break-
through. Better theoretical bounds exist through an algebraic [Car71] approach: the APSP prob-
lem can be solved using matrix multiplication (APSP for directed graphs is at least as hard as
boolean matrix multiplication). It is also possible to apply algorithms for fast matrix multiplica-
tion [Str69]. We refer to the survey [Tak08] and briefly state the result. Although very important
in theory, the algorithms are unfortunately impractical to implement. Let M(n) denote the time
it takes to multiply two n × n matrices. The fastest known algorithm is due to Coppersmith
and Winograd [CW90] with M(n) = O(nω), where ω < 2.376. The APSP problem for undi-
rected graphs with small weights can be solved in time Õ(M(n)) [Yuv76, Rom80, GM93, GM97,
AGMN92, AGM97, Sei95, Zwi98, SZ99, Zwi02].
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Time O Reference
mn· 1 [Bel67, For56]
n3 · 1 [Flo62, War62]

n3 ·
(

lg lg n
lg n

)1/3
[Fre76]

n3 ·
(

lg lg n
lg n

)1/2
[Tak92]

mn· lg(n2/m)
lg n [FM95]

n3 ·
(

lg lg n
lg n

)5/7
[Han04]

n3 · lg lg n
lg n [Tak05]

n3 ·
√

lg lg n
lg n [Zwi06]

n3 · 1
lg n [Han08a]

n3 ·
(

lg lg n
lg n

)5/4
[Han08b]

n3 · lg lg n
lg2 n

[Cha07]

mn· lg(n2/m)
lg2 n

[BVW08]

Table 2.6: Combinatorial algorithms for the All Pairs Shortest Path problem.

All Pairs Approximate Shortest Path (APASP) Algorithms

For some applications, the computation of exact distances may be too expensive. The computa-
tional complexity of approximation algorithms is better. We also refer to the survey by Sen [Sen09,
Section 5].

For undirected, unweighted graphs, Aingworth et al. [ACIM99] solve APASP with stretch
(1, 2) in time O(n2.5 lg n) and Dor et al. [DHZ00] solve APASP with stretch (1,O(lg n)) in time
Õ(n2). Cohen and Zwick [CZ01] solve APASP with stretch (2, 0) in time Õ(n3/2m1/2), with
stretch (7/3, 0) in time Õ(n7/3), and with stretch (3, 0) in time Õ(n2). Baswana and Kavitha
[BK06], Berman and Kasiviswanathan [BK07], and Baswana et al. [BGS09] give an Õ(n2)–
time algorithm for all pairs (2, W )–approximate shortest paths, where W denotes the largest
edge weight. Based on matrix multiplication, Zwick [Zwi02] obtains running time O(nω/ε) for
(1+ ε, 0)–approximate distances. Roditty and Shapira [RS08] give a “smooth” transition between
Zwick’s APASP result and the exact APSP algorithms based on matrix multiplication. Their dis-
tances have sublinear additive distortion.

2.4.3 Many Pairs Shortest Path (MPSP) Algorithms

We may want to compute the shortest paths between pairs from a restricted subset of vertices
U ⊆ V . For this, an APSP algorithm might be computing too much. Let s := |U |. For s = ω(1)
pairs, the algorithm of Pettie and Ramachandran [PR02] is currently the fastest method to compute
exact shortest paths.

Restricted graph classes. The algorithm by Cabello [Cab06] computes s–many distances in
planar graphs in time O

(
s2/3n2/3 lg n + n4/3 lg1/3 n

)
. The algorithm makes use of an efficient

distance oracle for planar graphs (see Section 3.1.3).
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Many Pairs Approximate Shortest Path (MPASP) Algorithms

For certain applications, approximate distances between a subset of the nodes may be enough.
For an overview of results, see [Elk05, Table I]. Similar to APASP, many algorithms use spanners
(subgraphs that approximate distances, for details see Section 2.3) to reduce the problem size.
Elkin [Elk05, p. 284] notes that the existence of an algorithm for constructing an (α, β)–spanner
with O(n1+ζ) edges (ζ > 0) in time O(T ) implies the existence of an algorithm for the MPASP
problem with s sources with running time O(T + s · n1+ζ).

Also, any (α, β)–approximate distance oracle (to be defined in the next chapter) with pre-
processing time O(T ) and query time O(Q) can trivially solve MPASP in time O(T + s · Q).
It is interesting to investigate whether it helps when we know the s pairs in beforehand (offline
scenario).

Aingworth et al. [ACIM99] compute (1, 2)–approximate distances in time O(n1.5
√

s lg n +
n2 lg2 n). Dor et al. [DHZ00] compute (1, 31/ζ4)–approximate shortest paths in time Õ(n2+ζ).
Cohen [Coh94] computes (1 + ε, polylog(n))–approximate shortest paths in time O(mnε′ +
sn1+ζ). Elkin [Elk05] computes (1 + ε,O(1))–approximate shortest paths in the same time.
Roditty et al. [RTZ05] construct a distance oracle for a subset of the nodes U ⊆ V . Based on this,
they can compute (2k − 1, 0)–approximate distances in time Õ(ms1/k + ks).

2.4.4 Shortest Path and Distance Queries

Processing shortest path and distance queries in graphs can be seen as a generalization of the
APSP problem and the MPSP problem, for which we do not know the pairs in beforehand (online
scenario). The efficient processing of these queries and the corresponding data structures are the
main focus of this thesis. The problem is defined in Chapter 3, wherein we also review related
work.
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Die Aufgabe [...] besteht darin, ein Verfahren anzugeben, wie
man sich aus einem Labyrinthe herausfindet.
(The task is to give a method how to find your way out of a maze.)

Ludwig Christian Wiener (1826–1896) [Wie73] 3
Review of Short Path Query Processing

The eminent importance of the shortest path problem has stimulated a large body of research, both
of theoretical and practical nature. Some important results for the general problem (without being
exhaustive) are mentioned in Section 2.4. In this chapter, we review results on the point-to-point
(approximate) shortest path query problem. In this overview, the query problem is restricted to
discrete, static graphs with positive edge weights. Also, the only criteria on the optimality of a
path is its length (for example, there are no turn penalties [Cal61, KP69]). If paths are required to
satisfy constraints other than distance (for example bounded leg paths [DP08]), the corresponding
results are not covered in this review.

For distance and path queries in computational geometry, we refer to [Mit97]. For the spe-
cific problem in computational geometry concerning robot path planning, we refer to [Sha97b,
KLMR98, Lat91]. For questions regarding query processing in dynamic graphs, see [Ram96a,
pp. 30–100] and [Ita08, Ber09, BHS07, RZ04, MN67], for time-dependent weights, see [OR90],
and for negative weights, see [YZ05].

The query scenario is different from the ‘classical’ scenario described in the previous sec-
tions (2.2 and 2.4). We are first presented with a usually large graph G = (V,E). A so-called
preprocessing algorithm may compute certain information — or a data structure — to prepare
for the next phase. After this preprocessing algorithm has been executed, users will ask queries,
which should be answered efficiently. In computational geometry, this and similar scenarios are
sometimes called repetitive-mode (as opposed to single-shot) scenarios [PS85, p. 37].

A lazy strategy would be not to precompute a data structure but to use a classical SSSP algo-
rithm to answer queries. The query would then take roughly linear time. An eager strategy would
be to precompute the result for all possible queries using an APSP algorithm.1 Both strategies
have its advantages and disadvantages: for the first strategy, no preprocessing is necessary but
the query processing is very slow; for the second strategy, the query execution is extremely fast
but the preprocessing step is very expensive and the space consumption is prohibitively large for
many graphs. In the path query scenario, we mediate between these two extremes: we analyze
the tradeoff between space, preprocessing time, and query time. If the query algorithm is allowed
to return an approximate shortest path, the worst-case stretch is also an important factor of the
tradeoff.

In the following, we review related work on shortest path and distance query processing for
graphs. Theoretical results are presented in Section 3.1 and practical results are summarized in
Section 3.2. The review in this chapter is made with best efforts; however, the list of methods and
algorithms is not exhaustive.

1We assume no knowledge about the query distribution. In practice, we might actually know that some queries are
more frequent than others.
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3.1 Theoretical — Distance Oracles

Thorup and Zwick [TZ05] coined the term distance oracle, which is a data structure that, after
preprocessing a graph G = (V,E), allows for efficient (approximate) distance and shortest path
queries.

Definition 30. An ((α, β)–approximate) distance oracle for a class of graphs G consists of a data
structure S and a query algorithm with the following characteristics:

• The preprocessing time is the worst-case time required to construct the data structure for
any G ∈ G.

• The space complexity refers to the worst-case size of the data structure for any G ∈ G.

After preprocessing G = (V,E), the data structure S supports (approximate) distance queries for
all pairs of vertices u, v ∈ V , returning a value d̃S(u, v). The query algorithm and its result are
characterized as follows.

• The query time is the worst-case time required to compute d̃S(u, v) among all G = (V,E) ∈
G and u, v ∈ V .

• A distance oracle S is said to have stretch (α, β) if for all G = (V,E) ∈ G and u, v ∈ V
its query algorithm satisfies

dG(u, v) ! d̃S(u, v) ! α · dG(u, v) + β.

The stretch is also called distortion.

In addition to the worst-case measures, the average-case behavior of the time and space com-
plexities, and, especially, the stretch, may also be of interest. For some distance oracles, only the
average stretch is guaranteed. For other distance oracles, the stretch condition is satisfied except
for σn2 pairs of nodes. This fraction σ ∈ [0, 1) is called slack. If not explicitly stated otherwise,
stretch means the worst-case stretch as in Definition 30.

We summarize the known results for general graphs (lower bounds in Section 3.1.1 and upper
bounds in Section 3.1.2), and we give an overview of the distance oracles for restricted classes of
graphs (Section 3.1.3). Some common techniques are explained in Section 2.3.

3.1.1 Lower Bounds

For directed graphs, distance oracles are closely related to reachability oracles. We do not review
upper bounds on algorithms for reachability oracles. Any lower bound on the space complexity of
reachability oracles directly implies a lower bound on any distance oracles with finite stretch. The
first part of the definition for reachability oracles is equivalent to the first part of the definition for
distance oracles (Definition 30) except that reachability oracles always consider directed graphs.

Definition 31. A reachability oracle for a class of directed graphs G consists of a data structure S
and a query algorithm with the following characteristics:

• The preprocessing time is the worst-case time required to construct the data structure for
any G ∈ G.
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• The space complexity refers to the worst-case size of the data structure for any G ∈ G.

After preprocessing G = (V,E), the data structure S supports reachability queries for all pairs of
vertices u, v ∈ V , returning a boolean value reachS(u, v) ∈ {5,⊥}. The query algorithm and its
result are characterized as follows.

• The query time is the worst-case time required to compute reachS(u, v) among all G =
(V,E) ∈ G and u, v ∈ V .

• The query algorithm returns

reachS(u, v) =
{
5 if and only if dG(u, v) *= ∞
⊥ otherwise.

For general directed graphs, any distance oracle with finite worst-case stretch requires space
Ω(n2) bits. Consider a complete bipartite digraph D = (V1 ∪ V2, A), where all arcs are directed
from V1 to V2. Any scheme that encodes reachability [AF90] information for D and all its 2Ω(n2)

subgraphs requires quadratic space for some subgraphs.
For sparse graphs with O(n) edges, the following tradeoff between space complexity and

query time has been proven. For details, see Section 4.2.1.

Theorem 5 (Pǎtraşcu [Pat08a, Theorem 2]). A reachability oracle using space S in the cell-probe
model with w–bit cells, requires query time t = Ω

(
lg n/ lg Sw

n

)
.

Corollary 6. A distance oracle for directed graphs with finite stretch using space S in the cell-
probe model with w–bit cells, requires query time t = Ω

(
lg n/ lg Sw

n

)
.

For dense graphs, the information-theoretic argument extends to undirected graphs as follows.
For undirected graphs, Thorup and Zwick [TZ05] prove a lower bound on the size of distance

oracles for a certain stretch. The worst-case instances are dense graphs with large girth. Recall that
the girth of a graph is the length of its shortest cycle and recall that mg(n) denotes the maximum
number of edges in a graph with n vertices and girth at least g (for details, see Section 2.3.1).

Theorem 7 (Girth-based lower bound [TZ05, Proposition 5.1]). For any integer k " 0 (called
stretch parameter), any distance oracle for graphs with n nodes and multiplicative stretch less
than α < 2k + 1 needs space at least Ω(m2k+1(n)) bits.

Erdős’ girth conjecture [Erd64, ES63] predicts that m2k+1(n) = m2k+2(n) = Ω(n1+1/k). For
the values of k for which the conjecture has been proven (including 1, 2, 3, and 5, see Table 2.4),
this yields a space lower bound of Ω(n1+1/k) bits.

Thorup and Zwick’s lower bound proof [TZ05, Proposition 5.1] roughly works as follows:
Recall the argument of the lower bound for graph spanners (Definition 26): in a graph with girth
g = α + 2, removing any edge increases the distance between its endpoints from 1 to at least
α + 1. Let G be a graph with n nodes, mg(n) edges, and girth g. All 2mg(n) subgraphs G′ of the
graph G also have large girth g(G′) " g(G). The distance oracle must distinguish between any
two different subgraphs G′ and G′′, and it cannot omit any edges since there is no alternative short
path. Thus, for a distance oracle with stretch less than g, at least lg 2mg(n) = Ω(mg(n)) bits of
space are necessary.

Note that the tradeoff is between space and stretch only. The lower bound does not refer to the
query time in any way; it even holds if the query algorithm is allowed to access the complete data
structure. The lower bound essentially states that we cannot compress certain dense graphs with
large girth to less than their original size, or, alternatively, that the size of the data structure must
be at least Ω(m).

41



CHAPTER 3. REVIEW OF SHORT PATH QUERY PROCESSING

3.1.2 General Graphs

In this section, if not stated otherwise, we consider distance oracles for general undirected graphs.
An overview is listed as Table 3.1. For a recent survey, we refer to Sen [Sen09, Section 4].

Thorup and Zwick, in their seminal work [TZ05], provide both the lower and the matching
upper bound: the space complexities of their distance oracles are tight with respect to the space
lower bound presented in the previous section (for those values of the stretch parameter k, for
which the girth conjecture has been proven). For any integer stretch parameter k " 1, their
randomized algorithm (deterministic version by Roditty et al. [RTZ05]) can preprocess a graph
with n nodes and m edges in time Õ(mn1/k) to construct a distance oracle of size O(kn1+1/k)
with query time O(k) and stretch 2k − 1. Note that for k = 1 this yields an exact distance oracle
with preprocessing time O(mn), which equals the running time of many APSP algorithms.

Let us look at their method in more detail. For the sake of exposition, let k = 2. The prepro-
cessing step is outlined as Algorithm 1 (original in [TZ05, Fig. 5]) and the query step is outlined
as Algorithm 2 (original in [TZ05, Fig. 2]). For efficient query times, preprocessed information is
stored in a hash table [FKS84] for each node). If the actual approximate shortest path is needed,
each edge of the path can be generated in constant time O(1). For a graph G = (V,E) and a node
u ∈ V , the open ball with respect to a set S ⊆ V is defined by BS(u) := {v : d(u, v) < d(u, S)}
(Definition 13). Let L(u) denote the node in S that is nearest to u. We also call this node the
landmark of u.

Algorithm 1 Preprocess (G = (V,E))
S = ∅
for each v ∈ V do

with probability n−1/2, add v to S
end for
for each v ∈ S do

run SSSP search from v in G
for each node u *= v, store d(u, v) and let FirstNodeu(v) be the penultimum node on the
shortest path; update L(u) if v is nearest landmark

end for
for each u ∈ V do

compute and store BS(u) (including distances)
for each v ∈ BS(u) let FirstNodeu(v) be the first node on the shortest path to v.

end for

Algorithm 2 Distance (s, t)
if s ∈ BS(t) or t ∈ BS(s) then

return local distance d(s, t) from the information at s or t.
else

return d(s,L(t)) + d(L(t), t)
end if

As mentioned before, the relationship between data structure size and stretch is almost optimal
with respect to their lower bound in Theorem 7. For those values of the stretch parameter k for
which the girth conjecture by Erdős has been proven (see Table 2.4), Ω(n1+1/k) bits of space are
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necessary for any distance oracle with multiplicative stretch less than 2k + 1. Thorup and Zwick
achieve space O(kn1+1/k) words for multiplicative stretch 2k − 1.

The time complexities (preprocessing and query) are not tight. Both have been improved upon
independently.

For weighted graphs, Baswana and Kavitha [BK06] (by using a new APASP scheme) reduce
the preprocessing time down to O(n2 lg n). For k > 2 they maintain query time O(k), but for
k = 2 the query time is Θ(lg n). For unweighted graphs, Baswana and Sen [BS06, Theorem 1.2]
(by using a (2, 1)–spanner) reduce the preprocessing time down to expected quadratic time. For
unweighted graphs, with an additional additive term (stretch (3, 8)), Baswana et al. [BGSU08]
achieve sub-quadratic preprocessing timeO(min{m+n23/12, mn1/2}), spaceO(n3/2) and query
time O(1). In a recent survey, Sen claims the stretch to be (3, 10) instead [Sen09, Table 1]. For
general k " 3, Baswana et al. obtain stretch (2k−1, 2k−2), spaceO(kn1+1/k), and preprocessing
time O

(
m + kn

3
2+ 4k−3

k(4k−6)

)
.

Mendel and Naor [MN06], based on Ramsey partitions [LS93, CKR04, BLMN05], reduce the
query time down to constant O(1), but they sacrifice a constant factor in the stretch. For stretch
(O(k), 0), their oracle needs spaceO(n1+1/k). For their data structure, the best-kown construction
time of O(mn1/k lg2 n) is due to Mendel and Schwob [MS08b].

For general graphs, Bourgain’s theorem (Theorem 3) yields an (O(lg n), 0)–approximate dis-
tance oracle with query time Õ(1) and space complexity Õ(n).

Derungs et al. [DJW07] consider the setting, where the query algorithm may access both the
data structure (termed index graph) and the original graph (whose representation must remain
unchanged). The access to the original graph is limited. In practice, a graph may be stored in
external memory but a small index can be stored in internal memory (the definition differs from
the definition for typical external memory algorithms [AV88, VS94] — it is related to the indexing
model [Yao90, DLO03]). Their tradeoff is between the size of the data structure (which may be
accessed for free at query time), the number of edges read from the original graph at query time,
and the stretch. The index graph is supposed to have sublinear size o(n). The probe factor r is
defined as the number of edges read from the original graph divided by the number of edges on

the result path. Derungs et al. provide an index graph with
(

n lg n√
r

)1+2σ
edges, using which they

compute paths of stretch (4σ + 1, 0), where σ is another parameter. They also prove two lower
bounds. For probe factor 0 (no edges can be read from the original graph), the index requires
space at least n lg n

2 bits. For probe factor n
10 and index size n lg n

10 bits, no stretch less than (5, 0) is
possible.

For an overview of distance oracles for general graphs, see Table 3.1.
Suppose that we need a distance oracle with quasi-linear space consumption. The oracle of

Thorup and Zwick [TZ05] achieves this for k = lg n with O(lg n) multiplicative stretch and
O(lg n) query time. The oracle of Mendel and Naor [MN06] improves the query time to O(1).
It would be very useful to reduce the stretch to O(1) instead. The space lower bound proves that
such a reduction is impossible for dense graphs. It is however open whether such oracles exist for
sparse graphs.

To conclude this section, note that any APSP or APASP algorithm constructs a complete dis-
tance table, which may serve as a distance oracle. The space requirement is O(n2) and the query
time is O(1). Distances in the table are optimal if computed by an APSP algorithm. For APASP
algorithms, the tradeoff between stretch and space is not optimal with respect to the lower bound of
Section 3.1.1. APASP algorithms may improve upon APSP algorithms in terms of the preprocess-
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Preprocessing Space Query Stretch Reference
O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS
Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08b]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k " 3

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]
O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]
n1+Ω(1/t) t < (1, 2) Lemma 11
n1+Ω(1/αt) t < (α, 0) Theorem 8

Table 3.1: Time and space complexities of distance oracles for general, undirected, unweighted
graphs (some upper bounds extend to weighted graphs). The upper part of the table lists upper
bounds; the lower part lists lower bounds (some restrictions on k and α apply). For the result
by Baswana et al. [BGSU08], the stretch is taken from [Sen09, Table 1]. Approximate distance
oracles are included only if the space requirement is at most o(n2).

ing time. Recall that the distance oracle of Thorup and Zwick [TZ05] is restricted to stretch fac-
tors of uneven integers. If multiplicative stretch less than 3 is desired, the preprocessing algorithm
of their oracle can only function as an APSP algorithm. The APASP algorithms by Cohen and
Zwick [CZ01] yield a (2, 1)–approximate distance oracle with preprocessing time Õ(n3/2m1/2)
and a (7/3, 0)–approximate distance oracle with preprocessing time Õ(n7/3). The algorithms by
Baswana and Kavitha [BK06] improve this to a (2, 0)–approximate distance oracle with prepro-
cessing time Õ(mn1/2 + n2) and a (7/3, 0)–approximate distance oracle with preprocessing time
Õ(m2/3n + n2).

If the input is restricted to special classes of graphs, the girth-based lower bound may not
necessarily apply. Distance oracles with better stretch/space tradeoffs exist.

3.1.3 Restricted Graph Classes

Given the prohibitive girth lower bound (Theorem 7), the natural question arises whether we can
construct a better distance oracle for certain classes of graphs. Graphs that actually appear in
practical settings are of particular interest. Indeed, there are better constructions for restricted
graph classes, in particular for several sparse graphs.

Planar Graphs (and Graphs with Bounded Genus)

Due to the importance of planar graphs, short path queries for planar graphs have been studied
extensively. A complete review of the corresponding results would deserve a chapter itself. We
give a brief overview; a summary can be found in Table 3.2.

For exact shortest path queries, the currently best result in terms of the tradeoff between
space and query time is by Fakcharoenphol and Rao [FR06, FR08]. The data structure requires
space O(n lg3 n) (improvement for non-negative weights to O(n lg2 n) by Klein [Kle05], an-
other improvement by a lg lg factor may be possible [MWN09]) and processes queries in time
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O(
√

n lg2 n). Note that their result holds for graphs with negative weights as well.
Some distance oracles by Cabello [Cab06] (and others) have better query times. The time and

space complexities of his distance oracles depend on a parameter r that can be specified by the
application. He proves that for any r ∈ [n4/3 lg1/3 n, n2] there is an exact distance oracle with
preprocessing time and space O(r) with query time O

(
n√
r
lg3/2 n

)
. This oracle yields an im-

provement over complexities of the oracles by Arikati et al. [ACC+96, p. 517] and Djidjev [Dji96].
They prove that, for any r ∈ [n3/2, n2], there is a distance oracle with preprocessing time and size
O(r) that supports queries in time O(n2/r). Djidjev [Dji96] obtains two more results. For any
r ∈ [n, n3/2], the preprocessing step takes time O(n

√
r), the other features remain the same. For

any r ∈ [n4/3, n3/2], the query time is O
(

n√
r
lg n

)
. The size remains O(r); the preprocessing

time remains O(n
√

r). For r = n3/2, we obtain query time O(n1/4 lg n) and space O(n3/2).
Cabello’s tradeoff [Cab06] yields better preprocessing times for the same amount of space.

The hammock decomposition [FJ88, Fre91, Fre95] of a planar graph is used to construct dis-
tance oracles optimized for certain classes of planar graphs. Let q = q(G) ∈ {1, 2, . . . n − 1}
denote the minimum number of outerplanar subgraphs of a planar graph G (proportional to the
minimum number of faces covering all vertices of G; the minimum is taken over all embeddings
of G in the plane). The number of hammocks is a topological measure imposing a natural hierar-
chy on the class of planar graphs. Djidjev et al. [DPZ95] give a distance oracle with preprocessing
time and space O(n + q lg q) and distance query time O(lg n + q). Recall that, for some planar
graphs, q may be Θ(n). If only distance queries are to be answered (no path queries), space O(n)
suffices. Djidjev et al. [DPZ00, DPZ91] also give a dynamic distance oracle for outerplanar graphs
with O(n) preprocessing and space and O(lg n) query time. They generalize this distance oracle
to planar graphs (and graphs with genus at most O(nε)) with q hammocks; the preprocessing and
space complexities are O(n + q3/2) and the distance query time is O(lg n + √

q). They obtain
a fast linear-space distance oracle for planar graphs with at most q = O(n2/3) hammocks. Chen
and Xu [CX00] present a data structure that, for a parameter 1 ! r ! q, uses O(n + q2/r + q

√
r)

space,O(n+q2/
√

r+qr3/4) preprocessing time, andO(
√

r lg r+â(n)) query time. â(n) denotes
the inverse of the Ackermann function. â(n) is an extremely slowly-growing function.

Gupta et al. [GKR04] address spatiotemporal queries on objects moving along the edges of
a certain class of planar graphs. Spatiotemporal queries (including distance queries) can be pro-
cessed in timeO(

√
n) on a data structure of sizeO(n

√
n) with preprocessing timeO(n

√
n). Their

tradeoff matches the tradeoff for the results by Arikati et al. and Djidjev with r = n3/2 [ACC+96,
Dji96].

Hutchinson et al. [HMZ03] consider shortest path queries in planar graphs in the parallel disk
model. This model is used for external memory algorithms [AV88, VS94]. Their data structure
uses O(n3/2/B) blocks of external memory and allows for a shortest path query to be answered in
O

(√
n+L
DB

)
I/O operations, where B is the block size, L is the number of vertices on the reported

path, and D is the number of parallel disks. Their result essentially also matches the tradeoffs
in [ACC+96, Dji96].

Restricted Queries. Kowalik and Kurowski [KK03] generalize adjacency queries in unweighted
planar graphs to queries for distances bounded by a constant h. The preprocessing time and space
complexities are O(n) and the query time is O(1) (which is an improvement over the O(lg n)
query time in Eppstein [Epp99, Theorem 12]). To obtain the space bound, they prove that any
constant power of a planar graph still has constant thickness (Definition 24). Then, answering a
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distance query translates to combining the results of a constant number of adjacency queries. Note
that for unweighted planar graphs, any distance oracle with stretch (1,O(1)) immediately yields a
(1 + ε, 0)–approximate distance oracle by combining it with the result by Kowalik and Kurowski.

Distances in undirected, unweighted grids are directly determined by grid coordinates. For a
weighted, directed (p × q)–grid, Schmidt [Sch98] gives an O(pq lg p)–time algorithm to build a
distance oracle that supports distance queries in time O(lg p) for paths starting in the left-most
column. In a straightforward way, this yields an O(pq lg pq)–time algorithm to build a distance
oracle that supports distance queries in time O(lg p + lg q) starting at any node on the outer face.
For a (

√
n×

√
n)–grid, the preprocessing and query times areO(n lg n) andO(lg n), respectively.

This result can be generalized (with rather different techniques). For an undirected graph with
genus g, Cabello and Chambers [CC07] provide an O(g2n lg n)–time algorithm to represent the
shortest path tree from all the vertices on one specified face. Any query distance from a vertex on
this face can be obtained in time O(lg n).

Approximations. The tradeoff between space and query time of all exact distance oracles is
such that for space O(n2−ε) the query time is at best O(nε/2) [Cab06]. Constant query time with
space o(n2) has not been achieved yet. To obtain fast query times of O(1) or Õ(1) with lower
space requirements, approximate distance oracles are considered. Recall that, for general graphs,
any distance oracle with multiplicative stretch less than α < 3 requires space Ω(n2). In the special
case of planar graphs, the corresponding tradeoff is much better.

Thorup [Tho04a] presents efficient (1 + ε)–approximate distance oracles for planar digraphs.
The main ingredient of Thorup’s construction [Tho04a] is a special separator consisting of a set of
shortest paths (instead of a general set of O(

√
n) nodes as in the Lipton-Tarjan [LT80] separator

theorem (Theorem 4)). Each node computes the distance to certain nodes of these separator paths.
His method achieves the fastest (and only) provable query times for planar digraphs. His oracle
has also been implemented and tested for large road networks [MZ07]. The results indicate that,
for these road networks, it is not competitive with the specialized methods to be discussed in
Section 3.2.3. For undirected graphs, Thorup provides two oracles.

1. The first distance oracle has query time O(1/ε), preprocessing time O
(
nε−2 lg3 n

)
, and

space requirement O(nε−1 lg n) [Tho04a, Theorem 3.19]
Klein [Kle02a] independently obtains the same oracle for space and query time by improv-
ing Thorup’s second oracle.

2. For the slower query time of O
(
lg n(lg lg ∆ + ε−1)

)
, space O(nε−1 lg n lg ∆) and prepro-

cessing time O(nε−1 lg2 n lg ∆) are sufficient [Tho04a, Proposition 3.14].
Klein [Kle05, Section 7] improves the preprocessing time to O(n(1/ε + lg n) lg n lg ∆).

The original separator theorem [LT80] can be generalized to minor-free graphs [AST90]. An
extension is also possible for Thorup’s shortest path separator theorem [Tho04a]. Abraham and
Gavoille [AG06] generalize it to minor-free graphs. Based on these shortest path separators, they
construct distance oracles for graphs without fixed minors (including planar graphs). The graph at
hand is recursively cut into pieces of almost equal size, separated by at most O(1) shortest paths.
In polynomial time, they obtain a (1 + ε, 0)–approximate distance oracle with space O

(
n
ε lg n

)

and query time O
(

lg n
ε

)
.

For an overview, see Table 3.2. Recall that ∆ denotes the diameter (largest finite distance) of
a graph.
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Preprocessing Space Query α Reference
O(n lg2 n) O(n lg2 n) O(

√
n lg2 n) 1 [FR06, Kle05]

O(n3/2) O(n3/2) O(
√

n) 1 [ACC+96, Dji96]

Õ(n4/3) Õ(n4/3) O(n1/3 lg4/3 n) 1 [Cab06, r : n4/3]

O(n3/2) O(n3/2) O(n1/4 lg3/2 n) 1 [Cab06, r : n3/2]
O(n7/4) O(n3/2) O(n1/4 lg n) 1 [Dji96, r : n3/2]

O(n7/4) O(n7/4) O(n1/8 lg3/2 n) 1 [Cab06, r : n7/4]
O

(
n
ε2 lg3 n

)
O

(
n
ε lg n

)
O(1/ε) 1 + ε [Tho04a, T3.19]

O
(

n
ε lg n

)
O(1/ε) 1 + ε [Kle02a]

O
(

n
ε lg2 n lg ∆

)
O(n

ε lg n lg ∆) O(lg n lg lg ∆ + lg n
ε ) 1 + ε [Tho04a, P3.14]

O(n
ε + n lg2 n lg ∆) O(n

ε lg n lg ∆) O(lg n lg lg ∆ + lg n
ε ) 1 + ε [Kle05, Sec. 7]

O(poly(n)) O
(

n
ε lg n

)
O

(
lg n
ε

)
1 + ε [AG06]

Table 3.2: Time and space complexities of distance oracles for undirected planar graphs (some
results extend to planar digraphs and/or minor-free graphs). α denotes the multiplicative stretch;
∆ denotes the diameter.

Approximate shortest path query processing for planar graphs has been investigated before
Thorup’s and Klein’s seminal results. Frederickson and Janardan [FJ89, FJ90] give stretch (3, 0)–
approximate routing schemes for planar graphs. Klein and Subramanian [KS98] give a data struc-
ture that also works in the dynamic case. The stretch is (1 + ε, 0); query and update times are
O(ε−1n2/3 lg2 n lg ∆).

Road Networks – Graphs with Bounded Highway Dimension

An important characteristic of road networks appears to be its highway dimension [AFGW10]. A
graph is said to have small highway dimension if for any r > 0, there is a “not-too-large” set of
vertices Sr, which all shortest paths of length at least r pass through. Sr is not too large if all
balls of radius at most O(r) contain only few vertices of Sr. Based on this notion, many efficient
practical methods (to be discussed in Section 3.2.3) such as contraction hierarchies [GSSD08,
BDS+08], highway hierarchies [SS05, SS06, NBB+08], transit-node routing [BFM+07, Sch08b],
and SHARC [BD08] have provable performance guarantees. The highway dimension of real road
networks has not been investigated yet.

Road networks also share some properties with planar graphs such as small separators [EG08].
The techniques of Thorup [Tho04a] may potentially apply too (experimental results indicate
so [MZ07]).

Bounded Tree-Width

For digraphs with tree-width w (Definition 18), Chaudhuri and Zaroliagis [CZ00] give an algo-
rithm, parameterized by an integer q ∈ [1, â(n)], to compute a distance oracle with query time
O(w3q) in preprocessing timeO(w3n lg n) for q = 1, preprocessing timeO(w3n lg∗ n) for q = 2,
and preprocessing timeO(w3n) for q = â(n). The tradeoff between preprocessing and query time
arises from semigroup computations over trees [AS87, Cha87, Sei06]. â(n) denotes the inverse
Ackermann function and lg∗ n denotes the iterated logarithm, which is the the number of times
the logarithm function has to be applied recursively to reach 1.
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Hagerup [Hag00a] obtains the same results (and extends it to dynamic oracles) using monadic
second-order logic. Courcelle and Vanicat [CV03b] obtain a related result for graphs with bounded
clique-width [ER97, CO00]. Their distance oracle can be computed in time O(n lg n) and (exact)
distance queries can be answered in time O(lg n).

k–chordal graphs

A graph is k–chordal if there is no cycle with more than k edges and no chord. A chord is an edge
between two nodes of the cycle that are not neighbors in the cycle. Chordal graphs are 3–chordal.
Gavoille et al. [GKK+01] give a (1, 1k

22)–approximate distance labeling scheme with labels of
size O(lg n lg ∆) for k–chordal graphs. They also prove that these label sizes are optimal. Their
result implies the existence of a (1, 1)–approximate distance oracle for chordal graphs with size
O(n lg2 n).

Intersection Graphs and Permutation Graphs

Chen et al. [CLSS98] consider interval and circular-arc graphs. A graph G = (V,E) is an interval
graph if there exists a set S of intervals on the real line (called model) such that there is a bijection
between the vertices v ∈ V and the intervals Iv ∈ S in such a way that an edge (u, v) ∈ E if
and only if Iu ∩ Iv *= ∅. Given a model, the input intervals get sorted by their endpoints (this
sorting step may take time O(n lg n)); after this, preprocessing takes time O(n). The distance
oracle has size O(n) and supports distance queries in time O(1). The definition of circular-arc
graphs is the same as that of interval graphs, with the exception that the set of intervals on the
real line is replaced by a set of circular-arcs on a unit circle. Sprague and Takaoka [ST99] give
a simpler method with the same performance guarantees. Gavoille and Paul [GP03a] obtain the
same performance using distance labelings.

Recall that a ball graph is an intersection graph of balls in Rdim. It consists of n balls with
centers vi and radii ri. Two centers vi, vj are connected in the intersection graph iff their balls
intersect in Rdim. A disk graph is a ball graph with dim = 2. In unit-disk and unit-ball graphs, all
radii are equal. Gao and Zhang [GZ05, Corollary 5.2] consider unit-disk (and unit-ball) graphs.
Based on the well-separated pair decomposition by Callahan and Kosaraju [CK95] (Definition 29),
they obtain, in preprocessing time O(n

√
n lg n/ε3), a data structure of size O(n lg n/ε4) that

supports (1+ε, 0)–approximate distance queries in timeO(1). Fürer and Kasiviswanathan [FK07]
give efficient algorithms for disk and ball graphs with general radii. Let R := max ri

min ri
denote the

ratio between the largest and the smallest radius in the graph. They construct sparse (1 + ε, 0)–
spanners (Definition 26), which have a separator of size S(n, R, ε) = O(n1−1/dimε−dim+1/2 +
ε−2dim+1 lg R) that can be found in time O(n lg n). After preprocessing of time Õ(n ·S(n, R, ε))
their distance oracle can answer queries in time O(S(n, R, ε)). Recall that the class of disk graphs
contains the class of planar graphs [Koe36]. The oracle of Fürer and Kasiviswanathan is more
general than the oracles for planar graphs but not competitive on planar instances.

Let π denote a permutation of [n] = {1, 2, . . . n}. The permutation graph G(π) is defined
as the graph with vertex set [n] and edge set {{i, j} : (i − j) · (π−1(i) − π−1(j)) < 0}.
Sprague [Spr07] gives an algorithm that preprocesses a permutation graph in time O(n) such
that distance queries can be answered in time O(1).
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Graphs with Bounded Doubling Dimension

The doubling dimension of a metric space is the minimum dim such that any ball of radius r can
be covered by at most 2dim balls of radius r/2 (Definition 19).

Talwar [Tal04] provides distance labels of length O(ε−dim), using which there is a (1 +
ε, 0)–approximate distance oracle with space O(nε−dim) and query time O(ε−dim). Abraham
et al. [ABN08] provide, for a parameter θ ∈ (0, 1], an (O(lg1+θ n), 0)–approximate distance or-
acle with space complexity O(ndim/θ) and query time O(dim/θ). The stretch is worse but the
dependencies on the doubling dimension dim are better.

The beacon-based embedding by Kleinberg et al. [KSW09] works as follows. A set of land-
marks is selected (for example at random); a constant number of landmarks suffices. Each node
stores its distance to all the landmarks. Distances are approximated by triangulation. Distance
estimates are unbounded for a σ–fraction of the node pairs. This fraction is referred to as slack.
For all the remaining node pairs, the triangulation yields a (1 + ε, 0)–approximate distance oracle
with linear space complexity and constant query time.

Graphs with bounded doubling dimension have also been studied in the setting of compact
routing [AM05, AGGM06, KRX07] and spanners [CG06]. Some researchers suggest to apply
algorithms that work well for graphs with bounded doubling dimension to Internet-like graphs.
However, the graph representing the Internet does not appear to have bounded ball growth or
bounded doubling dimension. Both measures can be large [FLV08].

Power-law Graphs and Complex Networks

For power-law graphs, compact routing schemes have been studied. Any compact routing scheme
may serve as an approximate shortest path oracle. While the time to retrieve the approximate
distance may not be competitive, we can retrieve each edge of the path by simulating the decision
of a router in a centralized way such that path queries are efficient. The results for distance oracles
and compact routing schemes are often strongly related. For a routing scheme, all the information
needs to be distributed. This constraint renders the problem intuitively harder than constructing a
distance oracle, where information is centralized and the query algorithm is not restricted to local
information. We do not attempt to cover results on compact routing in this review. We instead refer
to [ANLP90, AP92, Gav01, GP03b, TZ01, AGM+08, CW04] and the references therein. Compact
routing schemes for power-law graphs with direct influence on the best results for distance oracles
are discussed in the following.

Krioukov et al. [KFY04] evaluate the compact routing scheme by Thorup and Zwick [TZ01]
for Internet-like inter-domain topologies and random power-law graphs. They also analyze the
stretch-distribution for this routing scheme when run on Erdős-Rényi Gn,p random graphs [ER60].
Enachescu et al. [EWG08] also analyze the compact routing scheme by Thorup and Zwick [TZ01]
for Erdős-Rényi Gn,p random graphs [ER60]. They prove that stretch (2, 0) can be achieved with
space Õ(n7/4) by selecting Õ(n3/4) landmarks. They also claim (without proof in the proceedings
version) that stretch (α, 0) can be achieved with space Õ

(
n1+ 2

α+1+ε
)

. Recall that the Erdős-
Rényi random graphs do not have a power-law degree sequence (Section 2.1.3).

The compact routing scheme by Brady and Cowen [BC06] is evaluated experimentally only.
More on their scheme can be found in Section 3.2.4 on practical results.
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Geometric Graphs

A geometric graph G = (V,E) has vertices corresponding to points in Rdim and edge weights
from a Euclidean metric; G is said to be a (α, β)–spanner for V , if for any two points p and q in
V the shortest path metric in G (α, 0)–approximates the Euclidean distance in Rdim. Since some
distances may be larger than the corresponding Euclidean distance, we can not just apply Johnson-
Lindenstrauss [JL84] (Lemma 2) to obtain an efficient distance oracle for G. For geometric graphs
with sparse spanners, Gudmundsson et al. [GLNS08] give a (1+ε, 0)–approximate distance oracle
with preprocessing time O(m lg n), space O(n lg n), and query time O(1).

Andersson et al. [AGL07] extend the result to geometric graphs with dense clusters using
the well-separated pair decomposition by Callahan and Kosaraju [CK95] (Definition 29) and
well-separated clusters by Krznaric and Levcopoulos [KL95]. If G contains N disjoint (α, 0)–
spanners that are inter-connected with M edges, there is an algorithm that constructs an (1+ε, 0)–
approximate distance oracle in time O((m + M2) lg n) with space O(M2 + n lg n) and constant
query time. Their algorithm chooses a representative point for each cluster, based on which dis-
tances are computed. As a potential application they give the following example: in the European
railway network, each country has a its own network (a spanner) and the railway networks of the
countries are then sparsely interconnected.

Sankaranarayanan and Samet [SS09, SSA09] adapt the well-separated pair decomposition to
spatial networks of dim dimensions. They obtain (1 + ε, 0)–approximate distance oracles using
space O(n/εdim) and query time O(lg n). With a hash table, the query time can be reduced to
O(1) while the space consumption increases to O(n lg n/εdim). They also evaluate their scheme
experimentally on road networks.

3.2 Practical

Efficient practical methods to process shortest path queries are often devised by following a feed-
back loop that consists of design, analysis, implementation, and experimentation. The approach
using this feedback loop is also called algorithm engineering [San09, Figure 1]. Since experimen-
tation is an integral part of the feedback loop, the choice of the datasets may highly influence the
outcome of the algorithm engineering process. If possible, experiments are run with input graphs
that are actually used in practice.

Practical instances for shortest path problems are often sparse. The number of edges is roughly
linear in the number of nodes. Besides sparsity, practical networks often have other important
properties. A large fraction of the efforts in the field of practical shortest path query processing
has been devoted to transportation networks, in particular to road networks. Road networks, for
example, share many properties with planar graphs; in particular, road networks also have small
separators. In practice, however, approaches directly based on separators are often not the most
efficient ones.

Experimental evaluation [Hit68, BH69, Dre69, GW73, Pap74, Gol76] has always been an im-
portant part of shortest path research. For the first practical methods devised by the algorithm en-
gineering approach, the feedback loop was rather short. Researchers found that the representation
of a graph in memory affects the performance of the algorithm. For sparse graphs, representing
the graph by an adjacency list is quite efficient. The list can be sorted by starting nodes (such a
representation is sometimes termed forward star form). It may be efficient to also sort the edges
of a node by their length [DGKK79]. Such a sorting step preprocesses the graph in order to ob-
tain faster query times. It may also be efficient to reorder the vertices such that proximity in the
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graph is reflected in proximity in memory as well. Such a reordering may have great impact on
the running time of the query algorithm due to caching effects [GKW07].

Reordering nodes and edges was just the beginning. If additional structure is computed, or if
the network is changed structurally, the investment during the preprocessing phase is higher but so
is the payoff at query time. Network decomposition [LS67, FLM67, KY65, Mil66, Hu68, HT69,
Yen71, GKN74, LR82] was used to speedup APSP algorithms on sparse networks. Other than the
articles on the network decomposition technique, the thesis of Smolleck [Smo75, SC81] and the
article by van Vliet [Vli78] appear to be among the first reports on the shortest path query problem
with “considerable” preprocessing.2

Smolleck models the network by an electric circuit, wherein each edge is mapped to an
impedance. According to [DP84], Smolleck achieves a speedup of 30 compared to Dijkstra’s
algorithm (on a graph with 2,047 nodes and 2,547 edges); the paths are on average 1.9% longer
than the optimal path; the preprocessing time is apparently 1,000 times slower than the query time.

Van Vliet compares the running times of Dijkstra’s [Dij59], D’Esopo’s [PW60, Pap74], and
Moore’s [Moo59] algorithms on road networks with up to 5,337 nodes and 14,930 edges. Based on
his observations, he introduces heuristics termed “spider web techniques” [Vli78, Section 6]. He
contracts nodes such that “groups of 2 or more links from the original network are combined into
single links representing minimum distance paths between their end nodes.” For an illustration, see
Figure 3.1. He attributes the idea to Hu [Hu69], who termed it “distance equivalent networks”;3

he also relates it to “triple operations” [Flo62, Mur65, Hu68]. Such a triple operation compares
an edge length with the lengths of paths with two edges using an intermediate “pivot node.” The
method is mainly used in APSP algorithms. Van Vliet combining APSP and SSSP techniques
into a query method illustrates the tradeoff that shortest path query methods address. Van Vliet’s
contraction techniques decrease the CPU time for multiple queries by approximately 25%.

For recent methods, two preprocessing strategies are distinguished. Hierarchical approaches
compute an additional graph structure to speed up shortest path queries. Approaches based on
graph annotation attach additional information to each vertex, based on which, at query time, the
search tree can be pruned.

3.2.1 Hierarchical Approaches

Hierarchical methods to compute shortest paths in graphs have been proposed by many researchers
[KK77, AJ94, SWN92, SFG97, IOAI91, CF94, JHR96, TF97, FS97, CRS98, CTB01, HJR95,
CL07, CZ07, AY00, JP02, AY01, HSW08, SS06, BFM+07, Sch08b, KKRS08, GSSD08, Hol08,
BDS+08]. An auxiliary graph is constructed hierarchically. A shortest path query is then an-
swered by searching only a small part of the auxiliary graph, often using Dijkstra’s algorithm.
This approach works very well for intrinsically hierarchical graphs.

If, for each level, the size of the graph is reduced by a constant factor, the hierarchy contains
O(lg n) levels. In practice, it may be beneficial to stop the recursive process when only O(

√
n)

nodes are left. For these remaining nodes, a distance table can be computed and stored. This yields
more efficient query algorithms at a comparably low preprocessing cost.

2An earlier approach by Bazaraa and Langley [BL74] was to preprocess a graph in order to “eliminate” negative
weights such that Dijktra’s algorithm can be applied.

3There may be a connection to the “minimum-route transformations” by Akers [Ake60] and William S. Jewell (no
reference). These network changes are based on “Wye-Delta” Y −∆–transformations of electrical networks. However,
the transformations appear to be restricted to planar networks and to two or three terminals. Hu and Torres [HT69,
p. 390] attribute smaller “flow equivalent networks” to Akers [Ake60].
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Figure 3.1: The contractions for nodes of degrees 2, 3, and 4 (termed “spider web” transforma-
tions) by van Vliet [Vli78, Figure 5].

Concrete approaches exploiting hierarchy are reviewed in the forthcoming section on road
networks (Section 3.2.3).

3.2.2 Graph Annotation Approaches

Algorithms exploiting the annotation approach are sometimes also termed goal-directed search
algorithms. Additional information is attached to all/some vertices or edges of the graph. Based
on this information, the search algorithm decides which part of the graph not to search.

A* Search

A* [Gel63, Sam63, KHI+86, HNR68, Dor67, Gel77, Kor85] is a popular search technique in
Artificial Intelligence. The idea is to direct the search towards the goal. In the priority queue
implementation of Dijkstra’s algorithm, at each iteration, the node with the shortest distance to the
source is taken from the queue. In the original A* algorithm, instead of ordering nodes by their
distance from the source, nodes in the queue are ordered by their distance from the source plus
a potential (see for example [Del09, Algorithm 2, p. 22]). By adding a potential to the priority
of each node, the order in which nodes are removed from the priority queue is altered. A good
potential function increases the priority of nodes that lie on a shortest path to the target (usually
by decreasing the priority of the other nodes). In road networks for example, if the coordinates of
the target are known, the Euclidean distance provides a good lower bound on the graph distance
and thus a good potential function [SV86]. Using the Euclidean distance as a potential function
for A* has been exploited and applied successfully. In general, however, the coordinates may not
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be known. A metric embedding or a drawing [WW05] can provide coordinates for a potential
function.

Goldberg and Harrelson [GH05] (see also [GW05, GKW06, GKW07]) propose to use a set
of landmarks S ⊆ V and the triangle inequality (their method is sometimes called ALT (A*-
Landmarks-Triangle inequality) for this reason). Their potential function is a “beacon-based”
triangulation [KSW09]. Analogous to the distance oracle of Thorup and Zwick [TZ05], all nodes
v ∈ V know the distance to all landmarks L ∈ S. For two nodes u, v ∈ V and a landmark
L ∈ S, the triangle inequality yields that d(u, v) " d(u,L) − d(v,L). Taking the maximum
difference over all L ∈ S yields the best estimate, which is used as a potential in the A* search.
The quality of the lower bound highly depends on the landmark selection. Since in the preprocess-
ing phase the distances to all landmarks need to be computed and stored, the preprocessing time
and the space consumption highly depend on the number of landmarks. An important question
is how to select few but good landmarks. Random selection is a straightforward approach but
it may not guarantee good coverage, meaning that some nodes are far from all landmarks. Sev-
eral heuristics have been proposed to improve coverage [GH05, GW05], or to choose ‘important’
nodes [PBCG09]. The theory on beacon-based triangulations by Kleinberg et al. [KSW09] may
help to explain for which graphs ALT works well and how many landmarks to select. For graphs
with bounded doubling dimension, triangulations with respect to a constant number of landmarks
yields (1 + ε, 0)–approximate distances for a (1 − σ)–fraction of the node pairs (Kleinberg et
al. also prove that this slack σ is necessary). While A* with landmarks [GH05] works for general
graphs, it is thus expected to perform best on graphs with low doubling dimension. Poudel [Pou08]
proposes a similar algorithm with a potential function based on an approximate distance oracle.
With increasing quality of the distance approximations, fewer nodes are visited at query time.

A* is easy to implement and it yields decent speedups. In external memory setups, there
appear to be better practical methods [EM01]. Better speedups can be obtained when combining
A* with the bidirectional version of Dijkstra’s algorithm. This is however not a straightforward
combination. The potential function for the forward and the backward search need to be consistent
such that the shortest path is found when both searches meet. A good approach for consistent
potentials is to take the average of the forward and backward potential function [IHI+94].

Querying using precomputed cluster distances [MSM09] is a somewhat similar approach. The
network is partitioned into clusters and distances between all pairs of clusters are precomputed.
These cluster distances yield upper and lower bounds for distances, based on which the search is
directed towards the goal.

Reach

Reach-Based Routing [Gut04] is another modification of Dijkstra’s algorithm. Each vertex is
assigned a so-called reach value that determines whether a particular vertex will be considered
during Dijkstra’s algorithm. To have a high reach value, a vertex must lie on a shortest path that
extends a long distance in both directions from the vertex (similar to Highway Hierarchies [SS05,
SS06, NBB+08], to be discussed in the next section). A vertex is excluded from consideration if
its reach value is small, that is, if it does not contribute to any path long enough to be of use for
the current query. Gutman [Gut04] reports fast query times with a speed up factor of 10 compared
to Dijkstra’s algorithm.
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Arc Flags

In the preprocessing phase, the Arc Flag method [Lau04, KMS05, MSS+06] partitions the graph
into clusters and then, for each cluster, marks all edges where shortest paths towards nodes in the
cluster start. At query time, edges that are not marked with the target cluster are ignored. A related
approach uses geometric containers [WW03, WWZ05]. On its own, the preprocessing step of the
Arc Flag approach is rather expensive. However, when applied within a hierarchy [MSS+06] or
when combined with other techniques, it can be very efficient [BD08, BDS+08].

2–Hop Covers and Reachability Queries

For general directed graphs, the answers to shortest path and reachability queries (Definition 31)
are harder to compute than for undirected graphs [AF90]. The scheme by Cohen et al. [CHKZ03]
actually lies at the boundary between theory and practice. Cohen et al. focus on algorithms for
directed graphs that occur in practice. They introduce a new technique, which they call 2–hop
covers: such a cover is a set of shortest paths P such that for every pair of vertices (u, v) ∈ V ×V
there is a shortest path between u and v that is the concatenation of two paths in P . Based on
this cover, they assign labels to vertices. The sizes of the labels thus depend directly on the size
of the cover. It is known that graph classes with separators of size O(nσ) have 2–hop labels of
size at most O(n1+σ lg n) [Coh96] (optimal labelings may be smaller). Unfortunately, finding
a 2–hop cover of minimal size is an NP–hard problem; the optimal cover can be approximated
up to a logarithmic factor [CHKZ03, Theorem 4.2]. Fast practical computation of the labels
has been proposed [CYL+06, CYT06, CYL+08, CY09]. Still, depending on the optimal cover
size, the data structure may have size Õ(n

√
m) and queries may take Õ(

√
m) in the worst case.

Wang et al. [WHY+06] propose a different reachability labeling for (very) sparse graphs. They
consider a graph as having two components: a spanning tree plus a set of a additional non-tree
edges. For query time O(1) (reachability queries), their approach requires preprocessing time
O(n + m + a3) and space O(n + a2). Note that a = |E| − n + 1, which may be Θ(n2). Trißl
and Leser [TL07] create a graph index called GRIPP. Preprocessing time and space complexities
are O(m + n); the index supports efficient reachability queries in time O(m − n). They run
a depth-first search from several root nodes such that each node obtains pairs of pre- and post-
ordering rankings. A tree can then be queried for reachability by looking at the ranking only.
Their approach outperforms the labelings by Cohen et al. [CHKZ03] and Wang et al. [WHY+06]
in practice (experiments are run for metabolic networks). Extensions to shortest path queries are
planned. Jin et al. [JXRW08, JXRF09] propose PathTree (for sparse graphs) and 3–hop (for dense
graphs) to further improve preprocessing and query times.

3.2.3 Road Networks

Route planning for transportation networks (road networks in particular) has been studied inten-
sively [HP58, But68, EL82, IOAI91, SWN92, SKC93, CF94, LCL+94, ZZ94, Liu95, HJR95,
HJR96a, HJR96b, JHR96, AI97, FS97, HJR97a, HJR97b, SL97, SFG97, PS98, JHR98, CRS98,
HJR00, AY00, AY01, CTB01, ZC01, JP02, AOPS02, BSWW04, KMS05, HSWW05, GW05,
WWZ05, SS06, HLL06, MSS+06, BFM+07, BG07, KKK+07, CL07, Hol08, KKR08, KKK+08,
KKRS08, HSW08, GSSD08, Sch08a, Sch08b, BDS+08, DABC08, KH08, SS09, Del09]. The
9th DIMACS Implementation Challenge [DGJ08], which took place in 2006, stimulated a lot of
research. For recent results, we refer to the survey on route planning [DSSW09], the survey on
A*–based point-to-point shortest path queries [Gol07], the overview on engineering large network
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applications [Zar08], and the theses by Schultes [Sch08a] and Delling [Del09]. Route planning
is also strongly related to efficient path query processing on spatial networks [PZMT03, GKR04,
DABC08, SSA08, SSA09, SS09].

Approaches based on graph annotation can be applied as described in Section 3.2.2. Re-
cent approaches exploiting hierarchy are specifically tailored for transportation networks. For an
overview of recent hierarchical approaches see also [Del09, pp. 4–6] and the references therein.
We give a brief overview in the following.

Highway Hierarchies (HH) [SS05, SS06, NBB+08] are based on the observation that a cer-
tain class of edges (the ‘highway’ edges) tend to have greater representation among the portion
of the shortest paths that are not in the vicinity of either the source or target. A recursive compu-
tation of these edges, paired with a contraction step, leads to a hierarchy of graphs that enables
an impressive speedup at query time. Highway hierarchies were first proposed by Sanders and
Schultes for undirected graphs [SS05], and later extended to directed graphs [SS06]. Nannicini et
al. [NBB+08] give a different approach for directed highway hierarchies. Their main focus is on
time-dependent weights though. Highway-Node Routing (HNR) [SS07b] is a variant of HH that
supports fast updates by additionally constructing overlay graphs.

The contraction step is an integral ingredient of the HH speedup technique. Nodes with low
degree can be contracted, since their removal does not cause many additional edges (an observation
related to van Vliet’s “spider web” [Vli78] and Hu’s “distance equivalent networks” [Hu69]). This
observation can be generalized [GSSD08]: For each node, the number of potential shortcut edges
is computed. If for a node under consideration the number of shortcuts is smaller than the number
of shortcuts one would expect based on the node degree, the node is contracted. The method called
Contraction Hierarchies [GSSD08, BDS+08] uses intelligent heuristics to contract nodes in the
right order.4 This order yields a hierarchy, with which the query algorithm can efficiently find
shortest paths. Contraction-based techniques perform very well in practice. The preprocessing
step is particularly efficient.

Transit-Node Routing (TNR) [BFSS07, BFM+07, Sch08b] is based on the following obser-
vation: When driving somewhere far away, drivers usually leave their current location via one of
only a few access routes to a relatively small set of transit nodes. These transit nodes are then in-
terconnected by a sparse network relevant for long-distance travel. The TNR method precomputes
all shortest paths to transit nodes and all shortest paths among transit nodes. The preprocessing is
expensive but the query time is extremely fast.

Combining graph annotation and hierarchical approaches often yields powerful methods. Sev-
eral combinations have been investigated and evaluated empirically [HSWW05, BDS+08]. Two
particularly strong combinations are CHASE [BDS+08], which combines contraction hierarchies
and arc flags, and SHARC [BD08], which combines shortcuts and arc flags. Shortcut edges are
additional edges that maintain the original distance but decrease the number of hops (the number
of edges on the shortest path, Definition 8). The problem of finding the best k shortcuts has been
formalized and it is apparently hard (see [BDDW09, Theorems 1 and 2]). Nevertheless, SHARC
works very well in practice.

For an overview of the preprocessing time vs. query time tradeoff for some of these methods
see Figure 6.5; for experimental results, see Tables 6.4 and 6.1 (all in Chapter 6).

The performance of these hierarchy-based methods is really good in practice, however, com-
plexity results are mostly experimental only.5 Recently, Abraham et al. [AFGW10] show that

4Van Vliet [Vli78] contracts nodes up to degree 4; his contractions of nodes with higher degree did not yield any
speedup but a slowdown. The contraction order appears to be very important.

5Exactness and correctness are proven.
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if a graph has low highway dimension, algorithms based on reach [Gut04], contraction hierar-
chies [GSSD08, BDS+08], highway hierarchies [SS05, SS06, NBB+08], transit nodes [Sch08b],
and SHARC [BD08] have provable efficiency guarantees.

Some of the methods that were tailored for road networks also perform well for timetable
information systems [Sch05b, MHSWZ04, PSWZ07, Jac08, BDW09] (for details we refer to the
thesis by Schulz [Sch05b]) and for grids and unit-disk graphs [Del09, Tables 4.21 & 4.22]. For
higher-dimensional graphs, however, the preprocessing time and the space consumption increase
significantly [BDS+08, Tables 10 and 11].6

3.2.4 Complex Networks

Although very efficient when applied to road networks, the hierarchical techniques outlined in the
previous section seem to have problems handling graphs with higher node degrees. For complex
networks, other techniques and heuristics have been suggested and evaluated.

Rattigan et al. [RMJ06] approximate distances in graphs using a structure index. Their algo-
rithm grows zones using random exploration starting from random seeds. When combining their
zones with landmarks, the algorithm computes the distances between each node and zone in time
O(ms) for s zones. They obtain approximations of the closeness and betweenness centrality for
nodes. The structure indices also help finding a graph clustering [RMJ07].

Potamias et al. [PBCG09] use landmark-based A*. Their strategies for landmark selection
outperform random landmark selection strategies. Their experimental evaluation includes social
networks. The networks they consider do not seem to have low doubling dimension. To the best of
our knowledge, the theoretical performance of beacon-based triangulations [KSW09] for complex
networks has not been investigated yet. Metric embeddings of power-law graphs seem to require
higher dimensional spaces.

Brady and Cowen [BC06] propose a compact routing scheme for unweighted power-law
graphs. Since the scheme is based on tree routing, it can be extended to efficient distance and
shortest path queries. Their distance oracle has sizeO(nE lg2 n) and it returns (1,D)–approximate
distances in time Õ(1) for a parameter D and a value E that depends on D and the graph. There
are no theoretical bounds on D and E . The scheme roughly works as follows: we grow a short-
est path tree from the node with the highest degree. All nodes up to distance D/2 form the core
with diameter D. The remaining nodes form the fringe. The fringe is claimed to be almost a
forest. E denotes the number of edges we must remove such that the fringe actually becomes a
forest. For each of these edges, an additional routing tree is produced. The scheme routes through
the node with the highest degree with additive stretch at most D or optimally using one of the
fringe-trees. Intuitively, small values of D imply large values of E . Experiments using random
power-law graphs [ACL00, CL02] indicate that both D and E can be chosen to be small simulta-
neously. (1,O(1))–approximate distance oracles with space Õ(n) may be possible for power-law
graphs, although there is no proof.

Das Sarma et al. [SGNP10] provide a practical implementation of Bourgain’s embedding (The-
orem 3), and they propose an extension of the distance oracle by Thorup and Zwick [TZ05]. In
their extension, they omit ball computations. While the asymptotic performance is not affected,
their algorithms both for preprocessing and query are simpler and potentially faster in practice
than the corresponding original algorithms. The stretch bounds, however, only hold with high
probability.

6Bauer et al. [BDS+08, p. 22 of TR] observe that most speed-up techniques have problems when the average node
degree becomes too large.
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Xiao et al. [XWP+09] compress graphs by exploiting symmetries. Instead of treating vertices
as a single unit, they work on orbits of automorphism groups. Shortest path queries are answered
using compact BFS-trees, which are based on these orbits. Symmetries in complex networks seem
to be very common. Experiments show that their method may be very efficient. Scalability cannot
be assessed appropriately without having the code. The largest graph they consider (the Internet
Autonomous System network) has 22,442 nodes and 45,550 edges. For this graph, their pre-
processing algorithm runs in roughly 347 seconds [XWP+09, Table 3]. No speedup for queries is
reported. The third-largest graph under consideration (a social network of Erdős collaborators) has
6,927 nodes and 11,850 edges. For this graph, preprocessing takes roughly 29 seconds [XWP+09,
Table 3]. They report a speedup for shortest path queries of 57.72 [XWP+09, Table 4]. Based on
these two graphs, the running time of the preprocessing algorithm appears to be roughly quadratic
in the number of nodes. Note, however, that the running time of their algorithm mainly depends
on the symmetries, which may be the main cause for the difference in the running times (also for
the two graphs considered here).

Goldman et al. [GSVGM98] consider relationships among objects in large databases. Their
method processes keyword searches over databases in interactive query sessions. Distances be-
tween objects are computed based on a compact index, which consists of local neighborhoods and
distances to hub vertices (separators). Hubs are chosen as high-degree nodes. They evaluate the
performance using the Internet Movie Data Base (IMDB), which arguably has a power-law de-
gree sequence. In database systems, distance estimation is also related to computing the transitive
closure of relations [DR94, UY90, Jag90, HWYY05, TL07] and thus related to reachability query
processing.

Cheng and Yu [CY09] use 2–hop labels [CHKZ03] to efficiently compute exact distances. For
the DBLP graph with 52,682 nodes and 59,395 edges, preprocessing takes 20 seconds [CY09,
Table 1]. At query time, their method outperforms Dijkstra’s algorithm by two orders of magni-
tude [CY09, Figure 17 and Section 7.4].

The GRIPP index by Trißl and Leser [TL07] efficiently answers reachability queries for scale-
free networks (evaluation on metabolic networks). Distance queries are planned as an extension.

3.3 Summary

Shortest path query processing in graphs has been studied extensively both in theory and in prac-
tice. Practical investigations focus mainly on the important class of transportation networks, for
which substantial speedups with respect to classical SSSP algorithms can be achieved. For trans-
portation networks, the focus of practical research efforts appears to be shifting to dynamic sce-
narios. For complex networks, methods have been proposed only recently; their efficiency and
optimality is still under investigation.

Theoretical research on distance oracles for general graphs is centered around improving pre-
processing and query times (due to restrictive space lower bounds). For restricted graph classes
such as sparse graphs, planar graphs, and power-law graphs, various important questions remain
to be solved. Also, distance oracles for directed graphs of restricted classes are mostly unknown
territory.
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ningen banji saiou ga uma
(often what at first appears to be
bad turns out to be good)

Japanese proverb 4
Lower Bounds for Sparse Graphs

In this chapter, we investigate the tradeoff between the space complexity, the query time, and
the stretch of approximate distance oracles. The main result is a lower bound on the minimum
space consumption of distance oracles with query time t and stretch (α, 0). This space lower
bound holds even for sparse (polylog(n)–degree) graphs. The bound is proven using techniques
based on Pǎtraşcu’s [Pat08a] recent communication lower bounds on communication protocols for
the LOPSIDEDSETDISJOINTNESS (LSD) problem and the space lower bounds for data structures
obtained by reductions to LSD.

Thorup and Zwick [TZ05] prove that, for some integer values of the stretch parameter k " 1,
any distance oracle with multiplicative stretch less than 2k+1, needs space at least Ω(n1+1/k) bits
(Theorem 7, connected to Erdős’ girth conjecture [Erd64, ES63]). Their proof holds even if infinite
query time is allowed. For sparse graphs, the best bound it proves is that the size of the data
structure is at least proportional to the number of edges in the graph. An exact distance oracle with
space complexity O(m) and query time O(1) would still be possible. For sparse graphs, such a
distance oracle would be very useful. Unfortunately, our bound implies that such an oracle does
not exist. Even if a small stretch is allowed, linear space and constant query time is impossible.

4.1 Context

We prove a lower bound for approximate distance oracles in the cell-probe model (Definition 25).
The main result of this chapter is a three-way tradeoff between space, stretch and query time.

Theorem 8. There exists an integer n∗ such that for all n ≥ n∗, the following holds. Let S =
S(n), t = t(n) ! lg n, w = w(n), and α = α(n) = o

(
lg n

lg(wn)

)
be integers such that there

exists an (α, 0)–approximate distance oracle with query time t in the cell-probe model with word-
length w for any graph with n vertices and maximum degree at least poly

(
twα
lg n

)
. Then, the space

complexity of this distance oracle is at least

S " n1+Ω( 1
αt)/ lg n.

In the lower bound by Thorup and Zwick (Theorem 7), dense graphs with large girth (and
their subgraphs) are the worst-case instances. In our proof, r–regular graphs with large girth (and
their subgraphs) are the worst-case instances. For graphs with high regularity, devising a distance
oracle should intuitively be easy. For example, the distance between two nodes in the hypercube
is equal to the Hamming distance between the corresponding node labels. Short labelings may be
possible for various regular graphs.
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For an r–regular graph G = (V,E) with diameter ∆ = diam(G) = O(lgr n) and for α "
∆/g(G), (α, 0)–approximate distance oracles can be devised in a straightforward way. For each
node u ∈ V , compute the ball with radius ∆/α, denoted by B∆/α

G (u) (which containsO(r∆/α) !
nO(1/α) nodes). For a distance query d(u, v), if v ∈ B∆/α

G (u), then return the exact distance;
otherwise return ∆. This yields total space (and preprocessing time) n1+O(1/α) for an (α, 0)–
approximate distance oracle with constant query time.

We prove that this amount of space is necessary (up to constant factors in the exponent) for
distance oracles with constant query time that can preprocess r–regular graphs and all their sub-
graphs.1 It is impossible to prove a lower bound that holds for a particular graph G. This is due
to the fact that the algorithm can hard-code G and its distance table in order to answer queries in
constant time (without accessing the data structure). In this proof, we will refer to a “worst-case
instance” for a distance oracle as a base-graph G, meaning that the distance oracle must accept
at least the class G consisting of G and all its subgraphs. The space lower bound by Thorup and
Zwick (Theorem 7) is also proven with respect to a base-graph and all its subgraphs.

4.2 Preliminaries

In the cell-probe model [Yao81, Mil99] (Definition 25), a cell has w bits and the space of a data
structure is measured as the number of cells it occupies, denoted by S. The query time is measured
by the worst-case number of cells that a query reads. All computations based on cells that have
been read are free. The most typical values of the cell size (also called word length) are w = lg n
or w = polylog(n), but larger (or smaller) values may be interesting as well.

A class of graphs G = (V,E) is considered sparse if |E| = Õ(|V |). We may sometimes deem
a graph to be sparse if |E| ! n · poly(w, lg n).

4.2.1 Communication Complexity

Our proof uses a reduction from a distance oracle to a communication protocol. This proof tech-
nique [Ajt88, Mil94, KW90, MNSW98, AIP06, Pat08a, Pat08b] has been used for reductions
from various data structures (the cell-probe interactions with the data structure, to be precise) to
communication protocols.

Communication complexity [Yao79, AB07] is the problem of two separated parties, Alice and
Bob, both holding an input x ∈ {0, 1}n and y ∈ {0, 1}n, respectively, computing the result φ(x, y)
of a function φ : {0, 1}n × {0, 1}n → {0, 1}. Before Alice and Bob receive their inputs, they
agree on a communication protocol using which they will compute φ(x, y). It is assumed that both
Alice and Bob have infinite computing resources. The communication complexity of the protocol
is the number of bits sent in total. The communication complexity of computing φ is equal to the
communication complexity of the best-possible protocol.

For our proof, an intuitive understanding of a communication protocol as a sequence of mes-
sages between Alice and Bob should suffice. A more rigorous definition is the following.

Definition 32 ((Symmetric) Communication Protocol [AB07]). A (symmetric) t–round commu-
nication protocol for a function φ : {0, 1}n × {0, 1}n → {0, 1} is a sequence of function pairs
(S1, C1), (S2, C2), . . . , (St, Ct), (φ1, φ2). The input of Si is the communication pattern of the first

1As a comparison: it is known that a metric embedding into "2 of the shortest path metric on r–regular graphs with
girth g requires (Ω(

√
g), 0) distortion [LMN02]. This means that, for constant r and girth O(lgr n), an embedding-

based distance oracle with space eO(n) has stretch (Ω(
√

lg n), 0).
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i − 1 rounds and the output is from {1, 2}, indicating which player will communicate in the i–th
round. The input of Ci is the input string of this selected player as well as the communication
pattern of the first i − 1 rounds. The output of Ci is the bit that this player will communicate in
the ith round. Finally, φ1 and φ2 are 0/1–valued functions that the players apply at the end of the
protocol to their inputs as well as the communication pattern in the t rounds in order to compute
the output. These two outputs must be φ(x, y). The communication complexity of φ is

C(φ) = min
protocols CP

max
x,y

{Number of bits exchanged by CP on x, y} .

A trivial protocol is to communicate the entire input of one player, compute φ(x, y) at the
other player, and send back the result. This yields C(φ) ! n+1. The objective is to communicate
(significantly) less.

Lopsided Set Disjointness

In communication complexity [Yao79, KN96, AB07], SETDISJOINTNESS is the problem of two
separated agents deciding whether two sets are disjoint. In the asymmetric version of the problem,
called LOPSIDEDSETDISJOINTNESS (LSD), Alice and Bob receive sets SAlice and SBob, respec-
tively. Their goal is to determine whether SAlice ∩ SBob = ∅ using a communication protocol
(Figure 4.1). More precisely (as in Definition 32), the function φ is 1 if SAlice ∩ SBob = ∅ and

Alice U Bob
is given SAlice ⊆ U is given SBob ⊆ U

−→
←−
. . .
−→
←−

SAlice ∩ SBob
?= ∅

Figure 4.1: The LOPSIDEDSETDISJOINTNESS communication problem

0 otherwise. LOPSIDEDSETDISJOINTNESS has two parameters, N and B, known to both Alice
and Bob. The “universe” has size NB and both Alice and Bob are given a subset of this universe;
SAlice ⊆ [NB] and SBob ⊆ [NB]. Alice’s set has size |SAlice| = N . (Alice is given one of

(NB
N

)

different sets.) B thus denotes the fraction between N and the size of the universe NB. The size
of Bob’s set is not fixed; it may be Θ(NB). Two trivial protocols are the following: (1) Alice
communicates her set SAlice with a message of length 3lg

(NB
N

)
4 = O(N lg B) bits; Bob can then

compute SAlice ∩ SBob and reply with 1 bit. Alternatively, (2) Bob communicates his set SBob

with a message of length 3lg |SBob|4 + 3lg
( NB
|SBob|

)
4 (encoding |SBob| and SBob); Alice computes

SAlice ∩ SBob and sends back 1 bit. Either Alice or Bob communicates his/her complete set. The
question is how much communication Alice and Bob need to decide whether SAlice∩SBob = ∅. A
trivial randomized protocol is the following: Alice tosses a coin; based on the result, she decides
whether SAlice∩SBob and sends 1 bit to Bob. Let this protocol be denoted by CP . The probability
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that the result is correct is Pr[CP (SAlice, SBob) = φ(SAlice, SBob)] = 1/2. Alice could also send a
random sample, based on which Bob must decide whether SAlice ∩ SBob. A randomized protocol
CP ′ is said to have have two-sided error if there is a non-zero probability that Alice and Bob err
when they output either 0 or 1, and it is said to have one-sided error if the probability that Alice
and Bob err is zero for at least one of the possible outcomes 0 or 1. For example, CP ′ has one-
sided error if φ(SAlice, SBob) = 0 ⇒ Pr[CP ′(SAlice, SBob) = 0] = 1 [MR95]. A protocol CP ′ is
said to have bounded error if there are two constants ψ,ψ′ > 1/2 such that φ(SAlice, SBob) = 0 ⇒
Pr[CP ′(SAlice, SBob) = 0] " ψ and φ(SAlice, SBob) = 1 ⇒ Pr[CP ′(SAlice, SBob) = 1] " ψ′.

The communication complexity to solve LSD with a one-sided error is known to be bounded
from below (Miltersen et al. [MNSW98]). Note that a lower bound on communication protocols
with one-sided error is easier than a bound on protocols with two-sided error, since one-sided error
protocols are required to have a “better” performance than two-sided error protocols.

Lemma 9 (Miltersen et al. [MNSW98]). There exists some constant C > 0 such that in a one-
sided error protocol for LSD, either Alice sends CN lg B bits or Bob sends NBC bits.

Andoni et al. [AIP06] extend the bound to include protocols with two-sided error as well;
Pǎtraşcu [Pat08a, Pat09, Pat08c] proves the following (alternatively, one could use Pǎtraşcu’s ap-
proach with [Pat08b, Theorem 5.15] and [Pat08b, Chapter 5.4.3]).

Lemma 10 (Pǎtraşcu [Pat09, Theorem 1.4]). There exists some constant C > 0 such that in a
bounded-error protocol for LSD, either Alice sends CN lg B bits or Bob sends NBC bits.

This roughly means that, for Alice and Bob to know whether SAlice ∩ SBob with probabil-
ity bounded away from 1/2, either Alice or Bob must send almost their complete set. (For the
communication complexity of symmetric set disjointness, see [KS92, Raz92, BYJKS04, HW07].)

Data Structure Lower Bounds based on LSD

One key part in Pǎtraşcu’s results [Pat08a] is the reduction from LOPSIDEDSETDISJOINTNESS
(LSD) to reachability oracles. Recall (Definition 31) that the reachability query problem is, given
a (sparse) directed graph G = (V,E), to construct a data structure using less than n2 space such
that reachability queries (deciding whether there is a directed path from u to v) can be answered ef-
ficiently. Reachability oracles for undirected graphs are trivial: we compute the connected compo-
nents and store a component number for each node. Storing reachability information for directed
graphs appears to be hard [AF90] and so is the reachability query problem.

Recall Pǎtraşcu’s theorem on reachability oracles (Theorem 5), which we restate here.

Theorem (Pǎtraşcu [Pat08a, Theorem 2]). A reachability oracle using space S in the cell-probe
model with w–bit cells, requires query time t = Ω(lg n/ lg Sw

n ).

Pǎtraşcu’s proof is a reduction from a variant of LSD to the problem of reachability queries in
a butterfly graph and its subgraphs.

Definition 33. A butterfly graph BUTTERFLY(+, r) is a directed graph F (,r = (V,A) specified by
two parameters: the depth + and the degree r.

• F (,r has + + 1 layers V0, V1, . . . V( with r( vertices each.
The nodeset is [+ + 1]× [r](.

• Every vertex v ∈ V \ V( has out-degree r.
Every vertex v ∈ V \ V0 has in-degree r.
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• Arcs a ∈ A ⊆
(⋃

i=0
Vi × Vi+1 only connect nodes in adjacent levels Vi, Vi+1.

Two nodes v ∈ Vi and v′ ∈ Vi+1 are adjacent if they differ only at coordinate i. Node
(i, c1, c2, . . . ci, . . . c() is connected to all nodes (i + 1, c1, c2, . . . c′i, . . . c() for c′i ∈ [r].

Note that paths between any s ∈ V0 and t ∈ V( are unique. For an illustration of undirected
butterfly graphs see Figure 4.2 for 3 layers with degree 2 and Figure 4.3 for 3 layers with degree 3.

The reduction to LSD is based on the following idea: the universe of LSD is mapped to the
edgeset of the butterfly graph G = (V,E) using a bijection f : [NB] ↔ E. The input sets of
Alice and Bob can be mapped to subsets of the edges f(SAlice), f(SBob) ⊆ E, respectively.2 Let
us assume that the set of Alice consists of a set of κ paths of length + between nodes in V0 and V(.
Let (e1, e2, . . . e() denote such a path between u ∈ V0 and v ∈ V(. Bob simulates the reachability
data structure for the subgraph of the butterfly graph with “his” edges removed: G− = (V,E \
f(SBob)). Alice can find out whether at least one of her + edges ei is in Bob’s set f(SBob) by asking
one reachability query reachable(u, v). Alice does so by sending a message in a communication
protocol (technically speaking, she encodes the position of the word in the data structure she
wants to read as in the cell-probe model). By asking all queries in parallel [PT06, Pat08a], Alice
learns whether at least one of her κ+ edges is in Bob’s set f(SBob) — Alice thus also knows
whether f(SAlice) ∩ f(SBob) ⇔ SAlice ∩ SBob. It turns out that, if the data structure is small,
the communication complexity of this protocol is very low, which contradicts the communication
lower bound of LSD.

Figure 4.2: A drawing of an undirected butterfly graph with degree 2 spanning 3 layers.

Recall that the lower bound for reachability oracles directly implies a lower bound for distance
oracles on directed graphs (Section 3.1.1, Definition 31). In a straightforward way, it also implies
a lower bound for distance oracles on undirected graphs. The following direct reduction from
reachability oracles for subgraphs of the butterfly graph to distance oracles with less than stretch
(1, 2) yields the same space lower bound for the latter. The lemma is a minor result of this chapter;
it serves as a warm-up and as an illustration of Pǎtraşcu’s reduction technique.

Lemma 11. In the cell-probe model with w–bit cells, a distance oracle with additive stretch less
than 2 using space S requires query time t = Ω(lg n/ lg Sw

n ).

2We abuse notation by simplifying f(E′) :=
S

e∈E′
{f(e)}.
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Figure 4.3: A drawing of an undirected butterfly graph with degree 3 spanning 3 layers.

Proof. We give a straightforward reduction from reachability oracles for the directed butterfly
graph F in Pǎtraşcu’s reduction [Pat08a, Reduction 13] (see also [Pat08b, Reduction 7.11]) to a
distance oracle for the same graph, interpreted as undirected, say F ′. If node v is reachable from
u in F , the distance in F ′ is equal to +; if v is not reachable from u in F , the distance in F ′ must
be at least + + 2 since the butterfly graph F ′ and its subgraphs are bipartite. Therefore, if there is
an algorithm that approximates distances with additive stretch less than 2 using t probes in a data
structure of size S, then there is an algorithm — using the same t probes in the same data structure
of size S — that answers reachability queries by distinguishing distances + and distances at least
+ + 2.

Corollary 12. In the cell-probe model with w–bit cells, a distance oracle with additive stretch
less than 2 and query time t requires space S at least

S " n1+Ω(1/t)/w.

Note that, for w = 1, Corollary 12 yields a lower bound in the bit-probe model [MP69].
The remainder of this chapter is devoted to amplifying the construction to obtain a lower

bound for multiplicative stretch α. Instead of the butterfly graph, the worst-case instance is a
regular graph with large girth.

4.2.2 Regular Graphs with Large Girth

In our space lower bound, we need graphs that contain many disjoint shortest paths of length +.
The following is the definition of the set of sets of vertex-disjoint paths. It is used extensively in
the proof.

Definition 34. For a graph G = (V,E) and two positive integers κ, +, let P(,κ(G) denote the set
of sets of edges defined as follows. The members of P(,κ(G) are all possible sets P ⊆ E, where
P can be expressed as the union of κ vertex-disjoint paths in G, each of length exactly +.

The proof also requires that these paths (v0, v1, . . . , v() are shortest paths chosen such that
there is no short alternative path connecting v0 and v(. Paths do have this property if the girth of
the graph is sufficiently large.
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Graph Requirements

Our bounds require reductions from sparse graphs with large P(,κ(G). To ensure that P(,κ(G) is
sufficiently large, we require certain properties of the graph. Based on good expansion λ(G) of a
graph G, one can show that there are many disjoint paths in G [AC07]. Based on this, we prove
that P(,κ(G) is large (Lemma 21).

Definition 35 ((normalized) second-largest eigenvalue [Alo86, AFWZ95]). Let G = (V,E) be an
r–regular graph with n vertices. Let A be an adjacency matrix of G. Let B := A/r, that is bi,j =
1/r if (vi, vj) ∈ E and bi,j = 0 otherwise. Let λ0 " λ1 " . . . " λn−1 denote the eigenvalues
of B. Let λ(G) denote the second-largest absolute value of an eigenvalue: |λ0|, |λ1|, . . . |λn−1|.
λ(G) is called the (normalized) second-largest eigenvalue of G. λ(G) is also called the expansion
of G. G is called Ramanujan if λ(G) ! 2

√
r−1
r .

It is known that each |λi| is real number in the range [0, 1]. It is also known that λ0 = 1 and
that λ1 " 0. Therefore, λ(G) := max{λ1, |λn−1|}.

At one point in the proof, we rely on the expansion property of a graph. We use the follow-
ing theorem. Based on the expansion λ(G), Alon et al. [AFWZ95] prove a lower bound on the
probability that a random walk of length + stays inside a set of a certain density.

Theorem 13 (Alon et al. [AFWZ95, Theorem 4.2]). For a graph G = (V,E) with λ := λ(G),
the probability that a random walk of + steps from a uniformly random starting vertex stays inside
U ⊆ V , where |U | " ρn " 6λn, is at least ρ(ρ− 2λ)(.

The theorem implies the following corollary by setting ρ = 0.9.

Corollary 14. For a graph G = (V,E) with λ(G) ! 0.1, the probability that a random walk of +
steps from a uniformly random starting vertex stays inside U ⊆ V , where |U | " 9

10 |V |, is at least
1
2# .

Deep knowledge of expansion is not necessary to understand our proof in this chapter. For
more information on expander graphs, we refer to [Alo86, AFWZ95, HLW06].

Graph Construction

Our proof relies on the existence of graphs with large girth and large P(,κ(G); Ramanujan graphs3

(construction by Lubotzky et al. [LPS88] using the Cayley graph of a projective general linear
group) are what we use.4 For the connection to dense graphs with large girth, see also [EJ08,
Construction IV].

Lubotzky et al. [LPS88, pp. 262–263] prove the following.5 Recall that the Legendre symbol
for two unequal primes p *= q is defined as follows:

(p|q) =
{

+1 if there is an integer x such that p ≡q x2

−1 otherwise

3Ramanujan graphs are named after the Indian mathematician Srinivasa Iyengar Ramanujan (1887–1920).
4In our proof, we apply Theorem 13 by Alon et al. with the condition that λ(G) ! 0.1. The construction by

Lubotzky et al. is not the only one that guarantees regular expanders with large girth. The construction by Morgen-
stern [Mor94] may potentially work as well. It has been shown that random regular graphs also have large expan-
sion [Fri91, FKS89]. Random regular graphs with large girth may thus potentially work as well.

5Note that, in their paper, Lubotzky et al. do not normalize λ. The statement in Theorem 15 uses normalized
eigenvalues as defined in Definition 35.
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Theorem 15 (Lubotzky et al. [LPS88, pp. 262–263]). Let p and q be unequal primes congruent
to 1 mod 4. There exists a (p + 1)–regular graph Xp,q with the following properties:

• Case (p|q) = +1

1. Xp,q has q(q2−1)
2 nodes.

2. g(Xp,q) " 2 lgp q

3. diam(Xp,q) ! 2 lgp n + 2 lgp 2 + 1

4. λ(Xp,q) ! 2
√

p
p+1

• Case (p|q) = −1

1. Xp,q has q(q2 − 1) nodes.

2. g(Xp,q) " 4 lgp q − lgp 4

3. diam(Xp,q) ! 2 lgp n + 2 lgp 2 + 1

4. λ(Xp,q) ! 2
√

p
p+1

In the following we prove the existence of Ramanujan graphs for infinitely many and various
choices of large r and n. The theorem is mostly implied by the result of Lubotzky et al. [LPS88]
stated in Theorem 15.

Lemma 16. For every sufficiently large n0, r0 with n0 > 8r3
0, there exists a graph G = (V,E)

with the following properties:

1. |V | = n with n0
2 ! n ! 9n0

2. G is r–regular, where r0 ! r ! 2r0

3. The girth of G is at least g(G) " 1
2 lgr n

4. λ(G) ! 2
√

r−1
r

Proof. The graph claimed to exist is a Ramanujan graph Xp,q as in Theorem 15. The construction
by Lubotzky et al. [LPS88, pp. 262–263] requires unequal primes p *= q, both congruent to 1
mod 4. The graph has at least n = q(q2−1)

2 nodes and it is r = (p + 1)–regular.
In the following, we prove the existence of primes p, q such that r and n lie in the ranges

r ∈ [r0, 2r0] and n ∈ [n0
2 , 9n0].

The Bertrand-Chebyshev theorem6 states that for every x > 1 there is always at least one
prime p such that x < p < 2x. This generalizes to certain arithmetic progressions [Bre32, Erd35,
Bre64, Mor93]. Let z ∈ N0. Breusch [Bre32, p. 505] states

[...] daß für x " 7 zwischen x und 2x stets Primzahlen einer jeden der vier Progres-
sionen 3z + 1, 3z + 2, 4z + 1, 4z + 3 liegen.

6Named after Joseph Louis François Bertrand (1822–1900), who conjectured the existence of primes between x
and 2x in 1845, and Pafnuty Lvovich Chebyshev (1821–1894), who proved the conjecture in 1850. Ramanujan gave a
simpler proof in 1919. It’s a small world!
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that for every x " 7 there is a prime of the form p = 4z + 1 in the interval between x and 2x.
Note that the modular congruence is satisfied, p ≡4 1.

Due to Breusch [Bre32, p. 505], there exists a prime p ∈ [r0−1, 2r0−2] of the form p = 4z+1.
Let p denote this prime.

The Lubotzky et al. construction of the Ramanujan graph requires a different prime q *= p of
the form q = 4z + 1. Again, due to Breusch [Bre32, p. 505], there exists such a prime q ∈ [x, 2x]
if the intervals for p and q do not overlap. Let x := 3n1/3

0 4+1 ∈ [n1/3
0 +1, n1/3

0 +2). The imposed
condition n0 > 8r3

0 ensures that the two intervals do not overlap. Thus, there is a different prime
in the interval [x, 2x] for every integer x " 2r0 − 1. Let q denote this prime. The Ramanujan
graph has either q(q2 − 1) = q3 − q or q(q2−1)

2 = q3−q
2 nodes. For the number of nodes n, we

have that n ∈ [x3−x
2 , 8x3 − 2x]. With x = 3n1/3

0 4+ 1 ∈ [n1/3
0 + 1, n1/3

0 + 2), we derive

n ∈
"

n0 + 3n2/3
0 + 3n1/3

0 + 1− n1/3
0 − 2

2
, 8(n0 + 6n2/3

0 + 6n1/3
0 + 8)− 2(n1/3

0 − 1)

#

n ∈
"

n0 + 3n2/3
0 + 2n1/3

0 − 1

2
, 8n0 + 48n2/3

0 + 46n1/3
0 + 10

#

n ∈
hn0

2
, 9n0

i
for n0 sufficiently large (such that n0 " 48n2/3

0 + 46n1/3
0 + 10).

The graph is (p + 1)–regular. Let r := p + 1.
The girth is at least 2 lgp q (since 4 lgp q − lgp 4 " 2 lgp q for q " 2). In terms of n and r, this

yields

g(Xp,q) " 2 lgp q =
2
3

lgp q3 =
2
3

ln q3

ln p
=

2 ln(p + 1)
3 ln p

lgp+1 q3 " 1
2

lgr n.

The expansion is λ(Xp,q) ! 2
√

p
p+1 due to Theorem 15. This concludes the proof.

4.2.3 Counting Permutations

In the following, we prove the existence of a “not-too-large” set of permutations with certain
properties. The lemma is a tailored restatement of Pǎtraşcu [Pat08a, Lemma 11], proven using the
probabilistic method [AS00, Erd63].

Lemma 17. Let Sν denote the set of permutations of [ν] = {1, 2 . . . ν}. For ρ ∈ [0, 1], let Aρ

denote the set of all subsets of [ν] with ρ · ν elements. Let a := |Aρ|. Let B ⊆ Aρ of size at least
|B| " b. There exists a set Π ⊆ Sν of |Π| =: µ > a

b ln a permutations {π1, π2, . . . , πµ} such that
for any set A ∈ A(ρ) there exists a permutation πi with

⋃
ā∈A

{πi(ā)} ∈ B.

Proof. We denote πi(A) :=
⋃

ā∈A
{πi(ā)}. Let π̃ denote a randomly-chosen permutation π̃ : [ν] ↔

[ν]. Fix A ∈ Aρ. The probability that π̃(A) ∈ B is at least

Pr[π̃(A) ∈ B] =
b

a
.

Consider µ permutations πi : [ν] ↔ [ν] selected independently at random, π1, π2, . . . , πµ. The
probability that none of the permutations πi maps A to a set contained in B is bounded by

Pr[∀i ∈ [µ] : πi(A) *∈ B] =
(

1− b

a

)µ

< e−µb/a.
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We need that for any A ∈ A(ρ) there is at least one permutation out of the µ permutations that
maps A to set contained in B. We apply the union bound to obtain the following.

q := Pr [∃A ∈ A(ρ)∀i ∈ [µ] : πi(A) *∈ B] ! a

(
1− b

a

)µ

< ae−µb/a.

We need 1− q > 0 to apply the probabilistic method [AS00, Erd63] to guarantee that there exists
a set Π ⊆ Sν of µ permutations such that for each A ∈ A(ρ) there exists a permutation πi ∈ Π
with πi(A) ∈ B. We obtain

1− ae−µb/a > 0
1
a

> e−µb/a

− ln a > −µb

a

µ >
a

b
ln a.

The following lemma is a direct consequence of Lemma 17.

Lemma 18 (Corollary of Lemma 17). Let X ,Y denote two sets of size ν := |X | = |Y|. For
ρ ∈ [0, 1], let Aρ denote the set of all subsets of X with ρ · ν elements, Aρ :=

(X
ρν

)
. Let B be a set

of subsets of Y of size at least |B| " b such that each subset has ρ · ν elements. There exists a set
of

µ =
ρν

b

(
e

ρ

)ρν

ln
(

e

ρ

)

bijections f1, . . . , fµ such that for any A ∈ A(ρ) there exists a bijection fi with
⋃

ā∈A
{fi(ā)} ∈ B.

Proof. We select an arbitrary bijection f : X ↔ Y . f maps each A ∈ Aρ to a set A′ ∈ Y . Since
f is a bijection, we have that

|{A ∈ Aρ : f(a)}| = |Aρ| =: a.

By Lemma 17, there exists a set of permutations {π1, π2, . . . πµ} of Y such that for each A′ (as
above) there exists a πi that maps A′ to an element of B.

We have7 that

a =
(

ν

ρν

)
<

(
e

ρ

)ρν

.

The statement of the lemma is immediate.
7We use the following well-known inequality for binomial coefficients:

 
n
k

!
=

n!
k!(n− k)!

=
n · (n− 1) . . . (n− k + 1)

k!
! nk

k!
!
“en

k

”k
,

where the last step is due to the Taylor series of ex =
∞P

k=1

xk

k! , which yields ∀x, k : ex " xk

k! , in particular ek " kk

k!

and thus k! "
`

k
e

´k.
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4.3 Reduction from Lopsided Set Disjointness

In this section, we show a lower bound on the space complexity of any approximate distance oracle
on any base-graph G, based on essentially two parameters of G: the girth of G, and the path-count
of G, which is the cardinality of the set P(,κ(G).

We prove that a graph G with a large path-count and large girth is a “hard” base-graph for
approximate distance oracles.

Lemma 19. Let G = (V,E) be a graph, such that an (α, 0)–approximate distance oracle exists
for G and all its subgraphs, using query time t and space S. Let C denote the constant from the
LSD communication complexity lower bound in Lemma 10. Let κ, + be two positive integers, such
that + < g(G)

α+1 and |E| " κ+(2tw/+)1/C. Then,

S " κ

e
·
(
|P(,κ(G)|1/κ(

e(|E|/κ+)1−C

)(/t

·
(

1
e|E|

)1/tκ

.

The proof proceeds as follows. We start by giving some intuition in Section 4.3.1. We prove
that if there exists a good data structure then there is a good (short) protocol for LSD (Sec-
tion 4.3.2). Then, we use the LSD lower bound to show that there cannot be a good data structure
(Section 4.3.3).

4.3.1 Intuition

Was wirklich zählt, ist Intuition.
(The only really valuable thing is intuition.)

Albert Einstein (1879–1975)

We give a rough sketch of the proof of the main theorem, highlighting some technical details.
Statements are not necessarily formally correct in this section (for details, see proof of Lemma 20).
The proof is a reduction from the communication problem LSD, in which Alice is given a set
SAlice ⊆ [N ·B] of cardinality N , Bob is given a set SBob ⊆ [N ·B], and they must decide whether
SAlice ∩ SBob = ∅. For an illustration of the reduction, see Figure 4.4. There are communication
lower bounds for LSD (see Section 4.2.1). We prove that a distance oracle with good parameters
implies a good protocol for LSD, and derive our lower bound from the contrapositive of this claim.

A standard way to perform such reductions is to translate one query to the data structure into
a t rounds of a communication protocol. In total, Alice sends Bob t lgS bits and Bob replies
with tw bits. However, lower bounds in communication complexity are usually asymptotic. The
standard reduction puts the constant multiplicative factor in the exponent of S; therefore, using
the standard reduction, we can only prove lower bounds on the space complexity of the form
S " xΩ(1), where x is some expression that depends on the problem parameters. Since any
distance oracle must use space n and since there is a trivial distance oracle that requires space
Θ(n2) (a complete distance table), this reduction can not provide a meaningful lower bound.

Pǎtraşcu and Thorup [PT06, Pat08a] found a way to prove lower bounds on the space com-
plexity S of data structures that hold up to a polylogarithmic multiplicative factor. Alice holds κ

independent queries to the same database, where κ is large (κ = O
(

n
polylog(n)

)
). The κ queries

performed in parallel are transformed into a communication protocol. We use the same approach.
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Alice G = (V,E) Bob
is given SAlice F = {f1, f2, . . . fµ} is given SBob

Choose fi ∈ F such that

fi(SAlice) ∈ P(,κ(G),
encode i ('lg µ( bits)−→ Compute oracle

which yields for (V,E \ fi(SBob))
κ paths of length + of size S

FOR t rounds
lg (Sκ) bits
−→

κw bits←−
IF d̃(uj , vj) ! α · +
for all j ∈ [κ] THEN
SAlice ∩ SBob = ∅

ELSE SAlice ∩ SBob *= ∅ φ(SAlice,SBob)−→

SAlice ∩ SBob
?= ∅

Figure 4.4: Illustration of a reduction from a distance oracle to a communication protocol for
LOPSIDEDSETDISJOINTNESS. The protocol computes φ(SAlice, SBob) :=

(
SAlice ∩ SBob

?= ∅
)

.
G and F are known to both Alice and Bob. Details are in the proof of Lemma 20.

Our first objective is to prove that a good distance oracle implies a good protocol for LSD. We
identify the universe of the LSD problem with the edge set of a graph. Let the universe size of the
LSD problem be N · B = |E|. For the moment, f denotes an arbitrary bijection f : E ↔ [NB]
between the edgeset E and the elements of the universe [NB].

In the reduction, Alice plays the role of the querier, and Bob plays the role of the data structure.
Bob transforms his set SBob into a subgraph of G, G′ = (V,E′) = (V,E \ f(SBob)). In other
words, Bob constructs a subgraph G′ of G where the missing edges are the ones that correspond
to his input set SBob. Bob then builds a distance oracle for the graph G′. Alice constructs a set of
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queries based on her input SAlice, in a way that we shall specify next.
Let the girth g = g(G) of the graph G = (V,E) be large. Now consider one query to

the data structure, which asks for d̃G′(u, v) where u and v are close to each other in G, that is,
dG(u, v) = + < g

α+1 . Let pu,v be the path of length + between u and v in G. We ask for the
distance in G′. A query to the distance oracle returns the answer d̃G′(u, v), which is an (α, 0)–
approximation for dG′(u, v). We know that the girth of G′ is large, g(G′) " g, and that u and v
are close in G (at distance + < g

α+1 ). The result of the distance query is at most α+ if and only if
all edges on the path pu,v are in E′. Otherwise, the result of the distance query is a number strictly
larger than α+.

Thus, using one query to the distance oracle, we can distinguish the case that all edges of pu,v

are in E′ from the case where at least one edge is missing. Now, if we perform κ queries of this
form, we can check κ paths. Therefore, using κ queries we can check whether κ+ edges are all
in the graph, or whether at least one of these κ+ edges is missing. By setting NB = |E| and
N = κ+, this is an instance of the LSD problem. By doing a standard transformation from a data
structure to a communication protocol, we connect the parameters of the data structure to those of
a protocol for LSD: Alice sends roughly tκ lg(S/κ) bits to Bob, and Bob sends roughly tκw bits
to Alice.

However, the instance described above is a very specific instance of the LSD problem, where
Alice’s set is restricted to a set that corresponds to paths in G. For a general instance of LSD,
Alice’s input may not necessarily map to a collection of κ vertex-disjoint paths of length + each.
There is a technique of Pǎtraşcu [Pat08a] to perform a reduction from LSD even when only a non-
negligible fraction of Alice’s inputs map to a set of vertex-disjoint paths: in a preliminary round of
communication, Alice and Bob choose the bijection f from some “not-too-large” set of bijections
(see Lemma 18). In order to obtain such a set of bijections, we prove that there is a large set of
sets of vertex-disjoint paths in G (we refer to this as the path-count, as in Definition 34). If the
path-count is sufficiently large, then we obtain a strong lower bound.

For details, we refer to the proof of Lemma 20 in the next section.

4.3.2 Reduction from a data structure to a communication protocol

We prove that the distance oracle data structure can be transformed into a protocol for LSD. For
an illustration, see Figure 4.4.

Lemma 20. Let G = (V,E) be a graph, such that an (α, 0)–approximate distance oracle exists
for G and all its subgraphs, using query time t and space S in the cell-probe model with word size
w. Let κ, + be two positive integers, such that + < g(G)

α+1 . Then, there exists a protocol for LSD with
parameters N = κ+ and B = |E|/N , where Alice sends

tκ lg(eS/κ) + N lg(eB) + lg(eBN)− lg |P(,κ(G)| bits,

and Bob sends κtw bits.

Proof. We begin by defining a bijection between the universe [NB] and E. For now, any bijection
will do — additional restrictions will be imposed later. Denote the bijection by f : [NB] ↔ E.
Alice and Bob both know G and f .

In the LSD problem, Alice receives a set SAlice ⊆ [NB] of cardinality |SAlice| = N , and Bob
receives a set SBob ⊆ [NB]. We now derive a protocol for LSD based on the existence of the data
structure. Bob uses his set SBob to construct a set of edges, E′ = E \ f(SBob). That is, an edge
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e ∈ E is in E′ if and only if its corresponding element is not in Bob’s set SBob. Bob preprocesses
the graph G′ = (V,E′) creating the distance oracle data structure, and from now on, Bob “plays”
the role of the data structure. Since G′ is a subgraph of G, by the condition of Lemma 19, this data
structure requires space S, query time t, and it is an (α, 0)–approximate distance oracle for G′.

Alice constructs the set P = f(SAlice). For now, assume that P ∈ P(,κ(G). We call this
assumption the perfect bijection scenario; we shall remove this assumption later. Under this
assumption, P can be written as the union of κ vertex-disjoint paths, each of length +. Let
(u1, v1), . . . , (uκ, vκ) be the endpoints of these paths.

For every pair (ui, vi), we know that dG(ui, vi) = + (it cannot be smaller since the graph has
large girth and thus there is no cycle of length < 2+ in G). Denote the path of length + between ui

and vi by pi. We see that, on one hand, an (α, 0)–approximate distance query on the pair (ui, vi)
returns d̃(ui, vi) ! α+ if all of the edges of the path pi are in E′. On the other hand, the result
of the distance query is d̃(ui, vi) " g(G) − + if at least one of the edges of pi is not in E′, since
there are no cycles shorter than g(G), and since an approximate distance oracle never returns an
underestimate of the distance, but always an overestimate or the correct value. After querying all κ
distances (u1, v1), . . . , (uκ, vκ), if all of the κ queries return distances at most d̃(ui, vi) ! α+, then
Alice and Bob conclude that SAlice ∩ SBob = ∅, otherwise they conclude that SAlice ∩ SBob *= ∅.

Alice and Bob, in order to compute the answer to LSD, simulate κ queries to the data structure
by communication [MNSW98, Pat08a].

Bob computes the data structure itself, based on E′. Alice computes the set P and the pairs
(u1, v1), . . . , (uκ, vκ). Alice then considers which cells should be probed in the first round of each
of the κ queries, and sends the set of probed cells to Bob. This set can be communicated using
lg

(S
κ

)
bits (it is crucial not to send the queries one by one, which would require κ lgS bits [PT06,

Pat08a]). Bob replies with the contents of these cells, using wκ bits. Next, Alice sends the set of
cells to be probed in the second round, using another lg

(S
κ

)
bits, and Bob replies, using another

wκ bits. This procedure is repeated for t rounds in total. Overall, Alice sends

t lg
(
S
κ

)
! t · lg

(
eS
κ

)κ

= tκ lg
(

eS
κ

)
bits,

and Bob sends κtw bits.
We eliminate the perfect bijection assumption by including an additional round of communica-

tion at the beginning of the protocol. In this round, Alice chooses a particular bijection f to reach
the perfect bijection scenario. Instead of having only one bijection f : [NB] ↔ E, Alice and Bob
share knowledge of µ bijections f1, f2, . . . , fµ, all between [NB] and E. This set of bijections
must have the property that for any set SAlice ⊆ [NB] of cardinality N , there exists an i such that
choosing f = fi reaches the perfect bijection scenario, that is, ∃i ∈ [µ] : fi(SAlice) = P(,κ(G). If
there is such a set of µ bijections, then Alice and Bob can reach the perfect bijection scenario by
having Alice send 3lg µ4 bits (the index of the bijection they use) and then continue as before. By
Lemma 18, there is such a set of size

µ = N ln (eB) · (eB)N

|P(,κ(G)| .

Therefore, there is an LSD protocol where Alice first sends

lg N + lg ln(eB) + N lg(eB)− lg |P(,κ(G)| bits
! lg(eBN) + N lg(eB)− lg |P(,κ(G)| bits
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in order to reach the perfect bijection scenario, and then she sends another

tκ lg
(

eS
κ

)
bits

in the perfect bijection scenario. This yields a total of at most

lg(eBN) + N lg(eB)− lg |P(,κ(G)|+ tκ lg
(

eS
κ

)
bits.

Bob sends κtw bits. We ignore the final 1 bit that Alice sends to inform Bob of the result. For an
illustration, see Figure 4.4.

4.3.3 Communication complexity implies space complexity

Conditioned on the existence of a space-efficient distance oracle, there is a communication pro-
tocol for LSD with low communication complexity (Lemma 20). In the following, we prove that
the lower bound on the communication problem LSD (Lemmas 9 and 10) yields a lower bound on
the space complexity of distance oracles.

Recall the statement of Lemma 19: Let G = (V,E) be a graph, such that an (α, 0)–
approximate distance oracle exists for G and all its subgraphs, using query time t and space
S. Let C denote the constant from the LSD communication complexity lower bound in Lemma 10.
Let κ, + be two positive integers, such that + < g(G)

α+1 and |E| " κ+(2tw/+)1/C. Then,

S " κ

e
·
(
|P(,κ(G)|1/κ(

e(|E|/κ+)1−C

)(/t

·
(

1
e|E|

)1/tκ

.

Proof of Lemma 19. If a protocol computes LSD with parameters N and B, then either Alice
sends at least CN lg B bits or Bob must send at least NBC bits (Lemma 10).

Bob communicates κtw bits. By the condition of Lemma 19, B " (2tw/+)1/C. This implies

NBC " κ+ · 2tw/+ = 2κtw.

Bob, by sending κtw bits, uses strictly less than NBC bits. The lower bound on the communi-
cation complexity of LSD implies that Alice must communicate at least CN lg B bits. Using the
protocol of Lemma 20, we have that

lg(eBN) + N lg(eB)− lg |P(,κ(G)|+ tκ lg
(

eS
κ

)
" CN lg B.

Starting from this inequality, we derive a bound on S. Recall that N = κ+ and recall that the
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edgeset is identified with the universe of LSD (|E| = BN ). We get

tκ lg
(

eS
κ

)
" CN lg B − lg(eBN)−N lg(eB) + lg |P(,κ(G)|

tκ lg
(

eS
κ

)
" lg |P(,κ(G)|+ Cκ+ lg B − κ+ lg(eB)− lg(eBN)

lg
(

eS
κ

)
" 1

tκ
lg |P(,κ(G)|+ C+

t
lg B − +

t
lg(eB)− 1

tκ
lg(eBN)

eS
κ

" |P(,κ(G)|1/tκ · (B)C(/t · (eB)−(/t · (eBN)−1/tκ

S " κ

e
· |P(,κ(G)|1/tκ · (eB1−C)−(/t · (eBN)−1/tκ

S "
(
|P(,κ(G)|1/κ(

eB1−C

)(/t

· κ

e(e|E|)1/tκ
,

which yields the statement of the theorem.

4.3.4 Counting Paths

We prove a lower bound on the size of the set of sets of disjoint paths P(,κ(G).

Lemma 21. Let G = (V,E) be an r–regular graph and κ, + be two positive integers, such that
the following three conditions hold:

1. λ(G) ≤ 0.1,

2. |V | " 20κ+, and

3. + < g(G).

Then
|P(,κ(G)| "

(
|V |
κ

)
·
(r

8

)κ(
.

Proof. Let N = κ+.
Let us first choose one path. There are |V | vertices to start a path. Since the graph is r–regular,

and since + < g(G), we have r choices for the first step and r − 1 choices for each subsequent
step. This yields

|V | · r · (r − 1)(−1
!" #$4.1

possibilities to choose one path. Since the graph is undirected and since we want to reduce LSD
to distance queries (as opposed to actual path queries), an s− t path is equal to an t− s path. We
divide (4.1) by 2 to account for this.

Let us now choose κ vertex-disjoint paths of length + — one by one. Recall that, due to
Corollary 14 (implied by Theorem 13 of Alon et al. [AFWZ95]), the probability that a random
walk of + steps from a uniformly random starting vertex stays inside U ⊆ V , where |U | " 9

10 |V |,
is at least 1

2# . Let U := V \A. Since |V | = 20κ+ and |A| ! κ+, we have that |U | " 9
10 |V |.

According to (4.1) (divided by 2) there are at least

|V |
2

· r · (r − 1)(−1 " |V |
2

·
(r

4

)(
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(simple) paths of length +. According to the corollary, each path has probability at least 1
2# to avoid

A. Therefore, the number of different paths of length + in G that do not use any vertices of A is at
least

|V | ·
(r

8

)(
.

We apply this argument κ times to generate all sets with κ paths of length +. After each
application, we add the vertices of the path to A. We divide by κ! to account for the fact that the
order in which the paths were chosen does not matter. We obtain

|P(,κ(G)| "

(
|V | ·

(
r
8

)(
)κ

κ!
" |V |κ

κ!
·
(r

8

)κ(
"

(
|V |
κ

)
·
(r

8

)κ(
.

This concludes the proof of Lemma 21.

4.3.5 Assembly

We now combine Lemma 21 with Lemma 19 to prove a lower bound for any expander graph based
on its expansion, degree, and girth. After this, we use the Ramanujan graph from Lemma 16 to
derive the main result of this chapter. Both proofs consist of just a sequence of calculations to glue
together all the conditions.

Lemma 22. Let C denote the constant from the LSD communication complexity lower bound in
Lemma 10. Let G = (V,E) be an r–regular expander graph on |V | = n vertices, n sufficiently
large, with expansion λ(G) ! 0.1 and girth g = g(G). In the cell-probe model with word-length
at most w = no(1), for an integer α " 1, any (α, 0)–approximate distance oracle with query time
t that works for G and its subgraphs, requires space at least

S " n

lg n
· rΩ( g

αt)

given that

• g = g(G) " 2α and

• r "
(

4twα
g

)1/C
.

Proof of Lemma 22. Let + = 1 g
2α2 ! lg n. Let κ = |V |

20( . This yields κ " n
20 lg n . Recall that

N = κ+.
The conditions of Lemma 21 are satisfied:

• λ(G) ≤ 0.1 (by the condition of Lemma 22)

• |V | " 20κ+ (by the definition of + and κ)

• + < g(G) = g since g " 2α and + = 1 g
2α2

From Lemma 21, we know that (under the above conditions)

|P(,κ(G)| "
(
|V |
κ

)
·
(r

8

)κ(
.

The conditions of Lemma 19 are satisfied.
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• + < g(G)
α+1

• |E| = |V | · r
2 = 10κ+r " 10κ+

(
4twα

g

)1/C
" κ+(2tw/+)1/C

From Lemma 19, we know that (under the above conditions)

S " κ ·
(
|P(,κ(G)|1/κ(

e(|E|/κ+)1−C

)(/t

/((e|E|)1/tκe).

Since we are interested in the asymptotic behavior of S, we may ignore constant factors.
We claim that (e|E|)1/tκe = Θ(1). Since |E| " 1, we have that (e|E|)1/tκe = Ω(1). Since
|E| ! V 2 = 400+2κ2 ! 400κ4,

(e|E|)1/tκe ! O(1)
(e|E|)1/tκ ! O(1)

lg(e400+κ)
tκ

! O(1)

lg κ

tκ
! O(1).

We derive (using |V | = 20κ+ and |E| = |V | r2)

S " κ ·
(
|P(,κ(G)|1/κ(

e(|E|/κ+)1−C

)(/t

" n

20 lg n
·





((|V |
κ

)
·
(

r
8

)κ(
)1/κ(

e(|E|/κ+)1−C





(/t

" n

20 lg n
·




(|V |

κ

)1/κ(
· r

8e(|E|/κ+)1−C




(/t

" n

20 lg n
·




(20κ(

κ

)1/κ( · r
8e(10r)1−C




(/t

" n

20 lg n
·
(

(20+)1/( · r
8e(10r)1−C

)(/t

" n

20 lg n
·
(

rC

8e101−C

)(/t

· (20+)1/t.

By + = 1 g
2α2, we get the statement in the theorem for sufficiently large n.

Based on Lemma 22, we now use the Ramanujan graph from Lemma 16 to derive the lower
bound stated in the main theorem of this chapter (Theorem 8).

Proof of Theorem 8. Let C denote the constant from the LSD communication complexity lower
bound in Lemma 10.
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Let n0 = Θ(n). Let r0 :=
(

8twα
lg n0

)2/C
. We assume that n0 is sufficiently large such that

r0 " max{400,
(

4
C

)4/C}.
To use Lemma 16, we need that n0 > 8r3

0. Since t, α ∈ O(polylog(n)) and w = no(1), we
have that

8
(

8twα

lg n0

)6/C

< 8 (8twα)6/C < n0,

thus there exists a graph G = (V,E) with the following properties:

1. |V | = n′ with n0
2 ! n′ ! 9n0

2. G is r–regular, where r0 ! r ! 2r0

3. The girth of G is at least g(G) " 1
2 lgr n

4. λ(G) ! 2
√

r−1
r

Since n0 = Θ(n), we have that n′ = Θ(n). To simplify notation, we use n instead of n′ for the
remainder of the proof.

To apply Lemma 22, three conditions must be verified.

• λ(G) ! 2
√

r−1
r ! 0.1 holds for r " 400.

• g = g(G) " 2α

We have that r0 =
(

8twα
lg n0

)2/C
and r ∈ [r0, 2r0]. Also, both t ! lg n and α ! lg n.

g(G) " 1
2

lgr n

=
1
2

lg n

lg r

" 1
2

lg n

lg (2r0)

=
1
2

lg n

lg
(

2
(

8twα
lg n0

)2/C
)

=
C

4
lg n

lg
(

2C/28twα
lg n0

)

" C

4
lg n

lg
(

2C/28w lg2 n
lg n0

)

= Ω
(

lg n

lg(w lg n)

)
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Since α = o
(

lg n
lg(wn)

)
, the condition holds. Note that the necessary condition on α is

C

4
lg n

lg
(

2C/28w lg2 n
lg n0

) " 2α

C

8
lg n

lg(2C/28) + lg w + 2 lg lg n− lg lg n
2

" α

C

8
lg n

C
2 + lg 8 + lg w + lg lg n

2

" α " 1.

The lower bound thus extends to constant w and, in particular, to the bit-probe model [MP69].

•
(

4twα
g

)1/C
! r

We need two inequalities on r. Since r " r0 "
(

4
C

)4/C (for sufficiently large n0), we have

that (lg r)1/C ! √
r. Since r " r0 =

(
8twα
lg n0

)2/C
"

(
8twα
lg n

)2/C
,

(
4twα

g

)1/C

!
(

8twα lg r

lg n

)1/C

!
(

8twα

lg n

)1/C

· (lg r)1/C

!
(

8twα

lg n

)1/C

·
√

r

!
√

r ·
√

r ! r.

We now apply Lemma 22. Since g = g(G) " 1
2 lgr n, we have that

rg " r
1
2 lgr n = n1/2,

therefore,

S " n

lg n
· nΩ( 1

αt)

This concludes the proof.

4.4 Conclusion and Open Problems

Theorem 8 implies that a distance oracle with query time t and stretch (α, 0) requires space
n1+Ω(1/αt). Since our proof holds even for sparse graphs with m = Õ(n) edges, the space re-
quirement is strictly larger than the original graph size. For sparse graphs, our space lower bound
is an improvement over the lower bound by Thorup and Zwick [TZ05], which states that at least
space Ω(m) is required. We prove that O(m) is not enough.

Our lower bound also indicates that the tradeoff of the distance oracle of Thorup and Zwick
can potentially be improved for sparse graphs. Their tradeoff is that for multiplicative stretch
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(α, 0) and query time O(α), the space is roughly n1+O(1/α). Our lower bound only proves space
requirement n1+Ω(1/α2). There is a gap between the upper and the lower bound. Mendel and
Naor [MN06] improve the query time toO(1) while maintaining the same amount of space asymp-
totically. Their tradeoff is tight up to constant factors in the exponent with respect to our lower
bound.

Two technical questions remain open.

Linear Number of Edges. The worst-case graphs in our proof have degree Õ(1). It would be
interesting to generalize the proof to constant-degree graphs.

Graphs without Large Girth. In our proof, we require that a graph has large girth. It may be
possible to remove this requirement. In the reduction, we perform κ distance queries. The corre-
sponding κ paths must be vertex-disjoint and non-bypassable, meaning that any alternative path is
long. We ensure that paths do not have a short alternative by using graphs with large girth. It may
however be feasbile to use graphs without large girth to prove a lower bound.

Our lower bound applies to general sparse graphs. It however does not apply to specific graph
classes such as those with many short cycles; efficient distance oracles may still be possible for
specific graph classes.
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Unversehens hängt alles
ineinander [...]
(everything is connected)
Max Frisch [Fri64, p. 116] 5

Distance Oracles for Power-law Graphs

5.1 Introduction

Although complex networks are very common in practice (Section 1.1.2), there is no distance
oracle with provable guarantees better than those of the general distance oracle of Thorup and
Zwick [TZ05]. For stretch parameter k = 2, the distance oracle of Thorup and Zwick has the
following worst-case performance: the size is O(n3/2) and the stretch is (3, 0). Fortunately, the
theoretical worst-case stretch bounds of Thorup and Zwick’s distance oracle [TZ05] (and, also, of
their routing scheme [TZ01]) are not observed in practice1 [KFY04], even though they are tight.

In this chapter, we make an attempt to bridge the gap between theory and practice. We provide
the first theoretical analysis that directly links the power-law exponent τ of a random power-law
graph to the bound on distance oracle sizes.

We adapt the distance oracle of Thorup and Zwick [TZ05] to optimize it for unweighted,
undirected power-law graphs. The scheme by Thorup and Zwick is based on a set of landmarks
selected uniformly at random. Instead of sampling landmarks at random, we select the nodes with
highest degrees as landmarks.

The use of nodes with high degrees is a heuristic that has been proposed by many researchers.
The “high-degree” heuristic is also very common in practice. For power-law graphs it particularly
makes sense to leverage the power of high-degree nodes. These nodes are also called hubs. These
hubs “appear in most large complex networks” [Bar03, p. 63].

Connectors are an extremely important component of our social network. They create
trends and fashions, make important deals, spread fads, or help launch a restaurant.
They are the thread of society, smoothly bringing together different races, levels of ed-
ucation, and pedigrees. [...] Connectors — nodes with an anomalously large number
of links — are present in very diverse complex systems, ranging from the economy to
the cell. They are a fundamental property of most networks [...]. [Bar03, p. 56]

Indeed, with links to an unusually large number of nodes, hubs create short paths
between any two nodes in the system [Bar03, p. 64]

Intuitively, using these hubs to approximate distances in power-law graphs is a good heuristic.
The main result of this chapter is a theoretical proof that may explain why this heuristic performs
well in practice.

1Krioukov et al. [KFY04, Section IV.B] report routing tables with ∼ 52 entries for random power-law
graphs [ACL00] with 10,000 nodes. The bound by Thorup and Zwick [TZ01] is O(

√
n lg n) entries. For n = 10000,√

n lg n is ∼ 365.
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5.1.1 Overview of the Result

We give an informal statement of our result. The precise statement is deferred to Theorem 30.
For the nodes of a power-law graph, the probability that a node has degree x is proportional

to x−τ for some τ , which is called the power-law exponent. For most practical scenarios, the
power-law exponent lies in the interval 2 < τ < 3. These inequalities are assumed to hold in the
following.

The complexity analysis of our distance oracle is based on the random power-law graph model
with expected degree sequence proposed by Aiello, Chung and Lu [ACL00, CL02, Lu02, CL06]
with some minor simplifications.

Let γ = τ−2
2τ−3 + ε and ε > 0. For sufficiently large n, we prove that for a random power-

law graph (sampled from the modified Chung-Lu model, see Definition 37) with n nodes, with
probability at least 1 − 1/n, our distance oracle of size O(n1+γ lg n) can be constructed in time
O(n1+γ lg n). With probability 1, the distance oracle has stretch (3, 0). The space requirement of
O(n1+γ lg n) (for a plot of γ with respect to τ , see Figure 5.1) improves upon the general distance
oracle of size O(n3/2) by Thorup and Zwick [TZ05].

Our bounds on the space complexity of the distance oracle of Thorup and Zwick [TZ05] extend
to the labeled compact routing scheme2 by Thorup and Zwick [TZ01].

Figure 5.1: The figure shows a plot of f(τ) = τ−2
2τ−3 for τ ∈ (2, 3). For values of τ close to 2, for

example for τ = 2.1, which is the exponent that fits the power-law distribution well to the degree
distribution of the actual Internet inter-domain graph [FFF99, KFY04], our bound is O(n13/12+ε),
which indicates that the adapted distance oracle (and the adapted routing scheme) could be very
effective on Internet-like graphs.

2In this thesis, we focus on distance oracles; we do not define compact routing schemes. Some notes on the routing
scheme, without detailed explanation and proof. The routing scheme is a fixed-port scheme, meaning that it works
for any permutation of port number assignments on any node. The routing scheme requires a stretch–5 handshaking
(see [TZ01, Section 4]), and uses addresses and message headers of size O(lg n lg lg n), with probability at least
1 − o(1). Addresses and headers are based on an efficient path encoding scheme using O(lg n lg lg n) bits per node.
The encoding scheme relies on specific distance properties of power-law graphs. For details, see [CSTW09b].
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5.1.2 Related Work

Due to their large occurrence in practice, various aspects of power-law graphs and complex net-
works have been studied.

There is some evidence that, despite their unique features, power-law graphs are actually not
“easy” instances for algorithms. Although power-law graphs are sparse, optimization problems
remain hard: problems such as COLORING or CLIQUE are NP–hard for power-law graphs as
well [FPP08].

Power-law graphs have a dense core that consists of nodes with high degrees. Core prop-
erties have been investigated for several power-law graph models. Having a small core whose
removal substantially changes connectivity, would allow for a scheme that constructs shortest
paths through this core based on a separator theorem, as for planar graphs [Tho04a] and for
minor-free graphs [AG06]. However, the proportion of nodes that have to be removed to sub-
stantially change the connectivity of a power-law graph is linear with respect to the size of the
graph [CNSW00, NSW01, NWS02, BR03, FFV05, NR08]. Therefore, a separator-based strategy
is not suitable for power-law graphs; different techniques are necessary.

Also, most powerful techniques that work well for graphs with bounded doubling dimension
cannot be used. Although sometimes claimed, the Internet does not appear to have bounded ball
growth or bounded doubling dimension; both measures can be large [FLV08].

Practical routing schemes (and distance oracles) for power-law graphs have been proposed
[BC06, RMJ07, PBCG09, CY09, GSVGM98, XWP+09] (Section 3.2.4). However, there are no
theoretical results on the space requirements of routing schemes for power-law graphs.

An approach related to routing is due to Kleinberg [Kle00]. He formally proves that, in the
re-wired lattice model [BMST97, NW99, Kle00] (Section 2.1.3), greedy routing is a good routing
scheme. Greedy routing intuitively means that edges on the path to the target are chosen one after
another such that the estimated distance to the target is minimized. Kleinberg proves that paths
have lengthO(lg2 n). For this greedy approach to work, it is however crucial that nodes know their
coordinates within the lattice.3 Unfortunately, we cannot transform the greedy routing scheme into
a distance oracle, since there is no bound on the stretch for greedy routing; even for two nodes
connected by a short path of constant length, the greedy route may have length O(lg2 n). The
stretch is thus (O(lg2 n), 0).

Complex networks usually have diameter O(lg n). For a graph with diameter ∆, a (∆, 0)–
approximate distance oracle with constant space is trivial (by storing the diameter). If the oracle is
required to output actual paths, linear space suffices (the preprocessing algorithm creates a shortest
path starting at an arbitrary vertex; the query algorithm outputs paths on this tree).

The objective is to devise a distance oracle (or routing scheme) with constant stretch and good
theoretical bounds on the space requirements.

5.2 Preliminaries

5.2.1 Distance Oracle of Thorup and Zwick

The construction algorithm of the distance oracle of Thorup and Zwick [TZ05] is based on the
following ideas. Thorup and Zwick use random sampling to select a subset S ⊆ V containing
O(
√

n) vertices. From each vertex of the set S, the algorithm computes and stores the distance
to all the vertices in the graph. From all other vertices v ∈ V \ S, the algorithm computes the

3Without coordinates, paths may have length O(nc) [DEH07a, DEH07b].
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open ball around v until it “touches” the nearest vertex from S. For each v, the ball has expected
size O(

√
n). The balance between the sample size |S| and the expected ball size is optimal,

which yields the desired space complexity of O(n
√

n). For details, see Algorithms 1 and 2 in
Section 3.1.2.

5.2.2 Properties of Random Power-law Graphs

Essentially, all models are wrong, but some are useful.

George P. E. Box [BD86, p. 424]

We adapt the random graph model for fixed expected degree sequence as defined by Aiello,
Chung, and Lu [ACL00, CL02, Lu02, CL06] using the definition from [CL02, Section 2]. We
refer to the original random graph distribution using the expression Fixed Degree Random Graph
(FDRG).

Definition 36 (Fixed Degree Random Graph [CL02, Section 2]). In a random graph with a given
expected degree sequence ,w = {w1, w2, . . . , wn} such that ∀i : w2

i <
∑

j wj , the edge between
vi and vi′ is present in the random graph with probability

Pr [{vi, vi′} ∈ E] = wiwi′ρ, where ρ =
1∑
j wj

.

In the original FDRG model it is assumed that ∀i, i′ : wiwi′ <
∑

j wj . We adapt the original
model by deterministically inserting edges if wiwi′ >

∑
j wj . Without modification, the original

assumption would rule out the values for τ considered in this thesis.

Definition 37. For a constant τ ∈ (2, 3), the random power-law graph distribution RPLG(n, τ)
is defined as follows. Let the sequence of generating parameters ,w = {w1, w2, . . . , wn} obey a
power law:

wj =
(

n

j

)1/(τ−1)

for j ∈ {1, 2, . . . n}.

The edge between vi and vi′ is present in the random graph with probability

Pr [{vi, vi′} ∈ E] = min{wiwi′ρ, 1}, where ρ =
1∑
j wj

.

Note that, in both models, there is a one-to-one correspondence between a node vj and its
generating parameter wj . In the FDRG model, the value wj corresponds to the expected degree
of vertex vj , and Chung and Lu refer to ,w as the expected degree sequence. In the RPLG(n, τ)
adaptation, the graph is sampled according to the generating parameter values wj . Let Dj be the
random variable denoting the degree of node vj . In the RPLG(n, τ) model, the expected degree
E[Dj ] of node vj is less than or equal to the generating parameter wj . We refer to the edges
between two nodes vi, vi′ with wiwi′ " ∑

j wj as deterministic edges; we refer to the remaining
edges as random edges.

An important reason to work with this model is that the edges are independent. This in-
dependence makes several graph properties easier to analyze. We also (implicitly) rely on a
property called assortativity. Assortativity is the tendency of nodes with high degree to attach
to other highly connected nodes. This tendency is especially high in social networks. The
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opposite tendency, termed dissortativity, is more common in technological and biological net-
works. Highly connected nodes tend to be connected with low degree nodes. Li et al. [LADW05,
Definition 4.1] formalize assortativity as follows. They define the s(G) value of a graph as
s(G) :=

∑
{vi,vi′}∈E

deg(vi) · deg(vi′). Graphs sampled from the FDRG model tend to have a

high s(G) value, since high-degree nodes are attached to other highly connected nodes. Li et
al. state that s(G) measures to what extent a graph has a “hub-like core.”

The core of a graph consists of nodes having large degrees. Let γ = τ−2
2τ−3 + ε for some ε > 0

and γ′ = 1−γ
τ−1 .

Definition 38. For a power-law degree sequence ,w and a graph G with n nodes, the core with
degree threshold nγ′ , γ′ ∈ (0, 1), is defined as follows.

coreγ′(,w) :=
{

vj : wj > nγ′
}

,

coreγ′(G) :=
{

vj : degG(vj) > nγ′/4
}

,

where degG(vj) is the degree of vj in G (the subscript G is omitted when the graph is clear from
the context).

The coreγ′(,w) as defined here is the nγ′–Core in [Lu02, Chapter 4, Definition 2]. Note that
coreγ′(,w) and coreγ′(G) are not necessarily equivalent. Even if the degree bound in coreγ′(G)
was set to nγ′ instead of nγ′/4, the two cores would not be equal. In Section 5.4.1, we prove that
coreγ′(,w) ⊆ coreγ′(G) with high probability.

For each vertex u of a graph G, define its ball relative to the core (which is the open metric
ball as in Definition 13) as

Bcore(u) :=

{
v ∈ V (G) : d(u, v) < min

v′∈coreγ′ (G)
d(u, v′)

}
.

Note that it is important to use the open ball and not the closed ball.
The volume of a set of nodes is an integral notion in the proof. Let G be a random graph

sampled from RPLG(n, τ). For a set of nodes S, define its volume Vol(S) as the sum of all its
nodes’ wj , that is, Vol(S) :=

∑
vj∈S wj . We simplify notation by Vol(G) := Vol(V ). Note that

Vol(G) = 1/ρ (Definition 37). Let volG(S) denote the sum of the nodes’ degrees in the actual
graph G, volG(S) :=

∑
vj∈S degG(vj).

For our proof, the most important property of the FDRG model is captured in the following
lemma, which is applied for the core and individual balls. There is an edge between two nodes
vi, vi′ with probability proportional to wi · wi′ . The statement is extended to sets of nodes S, T ⊆
V (G) in the following. The lemma holds for both FDRG(,w) and RPLG(n, τ).

Lemma 23 ([Lu02, Lemma 3.3, proof in Lemma 9]). For any two disjoint subsets S and T with
Vol(S) ·Vol(T ) > c ·Vol(G), we have

Pr[d(S, T ) > 1] =
∏

vi∈S,vi′∈T

max{0, (1− wiwi′/Vol(G))} ! e−c.

The following lemma proves that Vol(G) is linear in n.
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Lemma 24. Let G be a random graph sampled from RPLG(n, τ). The volume Vol(G) satisfies

n < Vol(G) ! τ − 1
τ − 2

n.

Proof. • Lower bound: it holds that
∑

j wj > n, since wj > 1 for all j < n and wn = 1.

• Upper bound: it holds that

Vol(G) =
n∑

j=1

wj < w1 +
n∫

1

(n

x

)1/(τ−1)
dx ! τ − 1

τ − 2
n.

In the remainder of the preliminaries section, we prove certain concentration properties of the
adapted random power-law graph model. Since for the RPLG(n, τ) model the edge probability
is capped, several properties of graphs sampled according to the FDRG model do not hold for
graphs sampled according to the RPLG(n, τ) model.

In the following, we show concentration results for the actual degree of a vertex and for the
volume of a set of vertices under the adapted RPLG(n, τ) model. We also restate the correspond-
ing results in the original FDRG model.

Lemma 25 ([CL06, Lemma 5.6], generalized from [McD98, Theorem 2.7]). For a random graph
sampled from FDRG(,w), the random variable Dj measuring the degree of vertex vj is concen-
trated around its expectation wj as follows:

Pr[Dj > wj − c
√

wj ] " 1− e−c2/2
!" #$5.1

Pr[Dj < wj + c
√

wj ] " 1− e
− c2

2(1+c/(3
√

wj))
!" #$5.2

Lemma 26 ([CL06, Lemma 5.9]). For a random graph sampled from FDRG(,w), for a subset of
vertices S and for all 0 < c !

√
Vol(S),

Pr
[
|vol(S)−Vol(S)| < c

√
Vol(S)

]
" 1− 2e−c2/6.

Weaker concentration bounds hold for graphs sampled from RPLG(n, τ).

Lemma 27. Let n " 4
τ−1

(τ−2)2 . For a random graph sampled from RPLG(n, τ), if wj " 32 lnn,
for vertex vj , the degree Dj satisfies the following:

Pr[wj/4 ! Dj ! 3wj ] > 1− 2/n4.

Proof. Recall that ρ = 1/Vol(G) < 1/n (by Lemma 24).
For 1 ! j ! n, let h(j) ∈ {1, 2, . . . n} denote the smallest integer such that ρwh(j)wj ! 1.

Consider h(1). Since ρw1
(

n
n3−τ

)1/(τ−1) ! 1, we have that

h(1) ! 3n3−τ4.

Therefore, for all 1 ! j ! n,

h(j) ! h(1) ! 3n3−τ4.
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We split the degree Dj into two parts: the contribution by edges to nodes vj′ with j′ < h(j)
and the contribution stemming from edges to nodes vj′′ with j′′ " h(j). When h(j) " 1, there
are at least h(j) − 1 edges to nodes vj′ with j′ < h(j). Now consider the edges between vj and
vj′ for j′ " h(j). Since the sequence ,w is monotonically decreasing,

n∑

i=h(j)

wi "
n∫

n3−τ+1

(n/x)1/(τ−1)dx

" τ − 1
τ − 2

(
n− n1/(τ−1)2

τ−2
τ−1 n

τ−2
τ−1 (3−τ)

)
(since n3−τ " 1)

" τ − 1
2(τ − 2)

n (since n " 4
τ−1

(τ−2)2 ).

Recall that ρ = 1/
∑n

j=1 wj " τ−2
n(τ−1) by Lemma 24.

Let D′
j denote the random variable counting the number of edges from vj to vj′ with j′ " h(j)

in a random graph. Thus,

E[D′
j ] = µ = ρwj

n∑

i=h(j)

wi " wj/2 " 16 lnn.

Also, µ ! wj . Since there are no deterministic edges in this case, the random variable D′
j can be

bounded using Lemma 25:

Pr[D′
j > µ/2] " 1− e−µ/4 " 1− 1/n4,

Pr[D′
j < 2µ] " 1− e−3µ/8 " 1− 1/n4.

For h(j) = 1, the statement of the lemma follows directly.
If h(j) > 1, we have Dj ! D′

j +h(j)− 1. Notice that ρwj(n/wj)1/(τ−1) ! 1, which implies
that h(j) ! 3wj4 ! wj + 1. Therefore,

Pr[wj/4 ! µ/2 ! Dj ! 3wj ] ! 1− 2/n4.

Lemma 28. Let G be a random graph sampled from RPLG(n, τ). For a subset of vertices S sat-
isfying Vol(S) " 192 lnn, it holds with probability at least 1− 2/n3 that Vol(S)/8 ! vol(S) !
4Vol(S).

Proof. We split S into two parts S1 := {vj ∈ S : wj < 32 lnn} and S2 := S \ S1.
By Lemma 27,

Pr[Vol(S2)/4 ! vol(S2) ! 3Vol(S2)] " 1− 2|S2|/n4.

For each vertex vj ∈ S1, wj < 32 lnn. Since no deterministic edges are attached to S1, we
can apply Lemma 26 to S1.

Therefore, if Vol(S1) " 96 lnn, by Lemma 26,

Pr[Vol(S1)/2 ! vol(S1) ! 2Vol(S1)/3] " 1− 2/n4.

Therefore, the statement holds with probability at least 1− 2(|S2|+ 1)/n4 " 1− 2/n3.
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If Vol(S1) < 96 lnn, we have Vol(S2) " Vol(S)/2 " 96 lnn.
However, since

Pr

[
vol(S1) <

3
2
· 96 lnn ! 3

4
Vol(S)

]
" 1− 2/n4,

we can still apply Lemma 26 to bound vol(S1) from above.
In this case, since

Pr[Vol(S)/8 ! Vol(S2)/4 ! vol(S2) ! 3Vol(S2)] " 1− 2|S2|/n4,

the statement also holds with probability at least 1− 2/n3.

In Lemma 24, we prove that Vol(G) = Θ(n). Under the adapted RPLG(n, τ) model, com-
pared to the FDRG model, the edge probability may only decrease. We immediately have that
vol(G) = O(n) with high probability. With the concentration results of this section, we obtain
the following corollary.

Corollary 29. The number of edges of a random graph sampled from RPLG(n, τ) is at most
vol(G)

2 ! 4(τ−1)
τ−2 n with probability at least 1− n−2.

5.3 The Adapted Distance Oracle

We propose a modification of the distance oracle of Thorup and Zwick [TZ05, Fig. 5] for stretch
parameter k = 2, which guarantees stretch (3, 0). The main idea of the scheme by Thorup and
Zwick for k = 2 is the following (see Figure 5.2): in the preprocessing step, given a graph
G = (V,E):

1. Each node v ∈ V is chosen as a landmark independently at random with probability n−1/2.
The expected number of landmarks is

√
n.

2. For each node u ∈ V , find its nearest landmark L(u) and compute the distances from u to
all landmarks.

3. To guarantee optimal stretch for short distance queries, for every node u ∈ V a local ball
BG(u) = {u′ ∈ V (G) : d(u, u′) < d(u,L(u))} is computed, including all nodes with
distance strictly less than the distance to the landmarks.

The result of the distance query d(s, t) is exact if s ∈ B(t) or t ∈ B(s) and otherwise
stretch (3, 0) is guaranteed [Cow01]. Since the set of landmarks consists of a random sample,
the expected ball size is O(

√
n), which is equal to the number of landmarks. This is the optimal

balance for general graphs.
For power-law graphs a better balance is possible. Using high-degree nodes as landmarks is a

natural heuristic. We can select fewer landmarks and obtain smaller sized balls than [TZ05, Fig. 5]
at the same time.

It is required that n = |V (G)| is sufficiently large, specifically, that

n
ε(2τ−3)

τ−1 " 2(τ − 1)
τ − 2

lnn.
!" #$5.3

The complexity results of this chapter do not have any other implicit dependencies on ε.
The following is the precise version of the main theorem of this chapter.
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Figure 5.2: The distance oracle of Thorup and Zwick [TZ05, Fig. 5] for stretch parameter k =
2, which guarantees stretch (3, 0). An illustration of the preprocessing algorithm, from left to
right: (1) random sampling of landmarks, (2) SSSP computation for one landmark (node B), (3)
knowledge of one node after all SSSP computations (from all landmarks), and (4) ball for the
rightmost node in the bottom line

Theorem 30. Let γ = τ−2
2τ−3 + ε be a constant. Assume Equation (5.3) is satisfied. For ran-

dom power-law graphs from RPLG(n, τ) (Definition 37), there exists a (3, 0)–approximate dis-
tance oracle with the following properties. The preprocessing algorithm runs in expected time
O(n1+γ lg n) and creates a distance oracle of expected size O(n1+γ). These bounds also hold
with probability at least 1 − 1/n. After preprocessing, approximate distance queries can be an-
swered in O(1) time with stretch at most (3, 0).

Since power-law graphs do not have large girth, the lower bound of Chapter 4 does not apply to
power-law graphs. However, scale-free networks and expander graphs (which are the worst-case
instances in Chapter 4) also share certain important properties [MPS06, Theorem 1, Corollary 4,
and p. 247]. It is thus not clear whether space O(n1+ε) is reasonably good or whether space Õ(n)
may be sufficient.

Details for the preprocessing step are listed in Algorithm 3. Analogous to the oracle of Tho-
rup and Zwick [TZ05], for efficient query times, preprocessed information is stored in a hash
table [FKS84] for each node.

The query algorithm is the same as in [TZ05] for k = 2, see Algorithm 4.

Lemma 31. Algorithm 4 runs in time O(1) and achieves stretch (3, 0).

The following proof applies the same stretch and time bounds as [TZ05].

Proof. Time: At each node, all the information is stored in a hash table [FKS84] with constant
access time. The number of hash table reads necessary is constant.

89



CHAPTER 5. DISTANCE ORACLES FOR POWER-LAW GRAPHS

Algorithm 3 Preprocess (G = (V,E), γ′)
compute core ← {v ∈ V : deg(v) > nγ′/4}
for each v ∈ core do

run breadth-first search from v in G
for each node u *= v, store d(u, v) and let FirstNodeu(v) be the penultimum node on the
shortest path; update L(u) if v is nearest landmark

end for
for each u ∈ V do

compute and store Bcore(u) (including distances)
for each v ∈ Bcore(u) let FirstNodeu(v) be the first node on the shortest path to v.

end for

Algorithm 4 Distance (s, t)
if s ∈ BS(t) or t ∈ BS(s) then

return local distance d(s, t) from the information at s or t.
else

return d(s,L(t)) + d(L(t), t)
end if

t

s

L(t)
L(s)

d(s, t)
d(t,L(t))

d(s,L(t))

Figure 5.3: Illustration of the proof of worst-case stretch (3, 0) using the triangle inequality.

Stretch (3, 0) is guaranteed by the following observation [Cow01] (for an illustration, see
Figure 5.3). For a node u ∈ V , its ball is defined as follows.

Bcore(u) :=

{
v ∈ V (G) : d(u, v) < min

v′∈coreγ′ (G)
d(u, v′)

}

If neither s ∈ Bcore(t) nor t ∈ Bcore(s), then both

d(s, t) " d(s, core) = d(s,L(s)) and
d(s, t) " d(t, core) = d(t,L(t)).
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Using the second inequality, the triangle inequality

d(s,L(t)) ! d(s, t) + d(t,L(t)),

and d(t,L(t)) = d(L(t), t) (since G is undirected), we have

d(s,L(t)) + d(L(t), t) ! d(s, t) + d(t,L(t)) + d(L(t), t) ! 3d(s, t).

In practice, the return value

min {d(s,L(t)) + d(L(t), t), d(s,L(s)) + d(L(s), t)}

(or even min
L∈core

{d(s,L) + d(L, t)}) may yield better approximations (this triangulation is related

to A* [GH05] and beacon-based embeddings [KSW09], see Section 3.2.2).

5.4 Time and Space Complexities

The objective of this section is to prove the following lemma.

Lemma 32. Let γ = τ−2
2τ−3 +ε be a constant. Assume Equation 5.3 is satisfied. For random power-

law graphs RPLG(n, τ), Algorithm 3 runs in expected time O(n1+γ lg n) and creates a distance
oracle of expected size O(n1+γ). These bounds also hold with probability at least 1− 1/n.

The main result of this chapter, Theorem 30 is immediate from Lemmas 31 and 32.

5.4.1 Core Size

We prove that the size of the core is Θ(nγ) in expectation and with high probability. We also prove
that it contains the nodes with high degree with high probability.

The core is defined by

coreγ′(,w) :=
{

vi : wi > nγ′
}

,

coreγ′(G) :=
{

vi : degG(vi) > nγ′/4
}

.

To compute the size of coreγ′(,w), we solve the inequality wk > nγ′ and obtain k.

wk =
(n

k

) 1
τ−1

> nγ′

k−
1

τ−1 > nγ′− 1
τ−1

k < n(1−τ)(γ′− 1
τ−1 ) = nγ′(1−τ)+1

As γ′ = 1−γ
τ−1 , we have

|coreγ′(,w)| = 3nγ′(1−τ)+14 − 1 = 3nγ4 − 1.

Even if the same degree threshold nγ′ is used for coreγ′(,w) and coreγ′(G), the two sets of
nodes may differ. For a slightly smaller degree threshold nγ′/4 (as in Definition 38), the core of
the actual graph contains coreγ′(,w) with high probability. The proof of the following theorem
essentially consists of applying Lemma 27.
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Lemma 33. Let G be a random graph sampled from RPLG(n, τ). With probability at least
1− 1/n2 it holds that

coreγ′(,w) =
{

vi : wi > nγ′
}
⊆

{
vi : deg(vi) > nγ′/4

}
= coreγ′(G).

Proof. Let vi be a vertex in coreγ′(,w).
By Lemma 27, Di " nγ′/4 with probability at least 1− 2/n4. This holds for all j ! i.
Therefore, by applying the union bound, the probability that the core of the actual graph con-

tains the nodes with high potential coreγ′(,w) ⊆
{

vi : deg(vi) > nγ′/4
}

is at least 1− 1/n2.

Lemma 34. Let G be a random graph sampled from RPLG(n, τ). With probability at least
1− 1/n2,

|coreγ′(G)| = Θ(nγ).

Proof. • Lower bound: Since coreγ′(G) contains coreγ′(,w) with probability at least 1−1/n2,
its size is at least nγ with at least the same probability.

• Upper bound: Let i = 144nγ . By Lemma 27, Di ! 3wi < nγ′/4 with probability at least
1 − 2/n4. This holds for all j ∈ (i, n]. By union bound, coreγ′(G) does not contain any
vertex vj for i ! j ! n, with probability at least 1 − 1/n2, which implies |coreγ′(G)| !
144nγ with probability at least 1− 1/n2.

5.4.2 Ball Sizes

We prove that the expected ball size is small. This section contains the main technical idea, which
is the application of Lemma 23.

Let G be a random graph sampled from RPLG(n, τ). Recall that a ball is defined by

Bcore(u) =

{
v ∈ V (G) : d(u, v) < min

v′∈coreγ′ (G)
d(u, v′)

}
.

Lemma 35. Let b = γ′(τ − 2) + (2τ−3)ε
τ−1 be a constant. Assume Equation (5.3) is satisfied. For a

random graph G sampled from RPLG(n, τ), with probability at least 1 − 3/n2, it holds that for
all u ∈ V (G),

|Bcore(u)| = |{u′ ∈ V (G) : d(u, u′) < d(u, coreγ′(,w))}| = O(nb),
|E(Bcore(u))| = O(nb lg n),

where E(Bcore(u)) is the set of internal edges among vertices in Bcore(u).

Since for RPLG(n, τ) the edges are independent, in our analysis, the existence of every edge
in random graph G is only determined when it is needed, and before that it is treated as a probabil-
ity distribution as defined in our random graph model. We call the determination of the existence of
an edge according to its probability distribution revealing the edge. For a given vertex u ∈ V (G),
we define a sequence of balls (B0 = {u}, B1, B2, . . .) as follows:

• Let V ′ = V \ coreγ′(,w).

• Now define B0 = {u} and Bi = {v : dG(u, v) ! i}.
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• We also define the circles Ci = Bi \ Bi−1 for i " 0 with B−1 = ∅. Let Ei denote the
random variable counting the number of edges between Ci and Ci ∪ Ci+1.

We first give a concentration result on Ei.

Lemma 36. For circle Ci, the following holds with probability at least 1− 2/n3:

If Vol(Ci) < 192 lnn, then Ei ! 4 · 192 lnn, and

if Vol(Ci) " 192 lnn, then Ei ! 4Vol(Ci).

If Vol(Ci) < 192 lnn, then Ei ! 4 · 192 lnn, and if Vol(Ci) " 192 lnn, then Ei ! 4Vol(Ci).

Proof. For our analysis, we assume that the edges of the random graph are revealed in consecutive
steps as follows: in step i with i " 0, edges from Ci to V ′ \ Bi−1 are revealed and circle Ci+1 is
formed. In other words, when discovering Ci, the edges between Ci and V ′′ = V ′ \ Bi−1 have
not been revealed yet.

In particular, Ei measures the number of edges between Ci and V ′′ under the condition that
we know all edges adjacent to Bi−1. We can define another random graph G′ on the vertex set
V ′′, such that the edge between two vertices in V ′′ is sampled with the same probability as in
RPLG(n, τ). Now, Ei and volG′(Ci) have the same distribution, where volG′(Ci) denotes the
number of edges adjacent to Ci in G′.

Let vol(Ci) denote the random variable measuring the number of edges adjacent to Ci for the
original model FDRG. volG′(Ci) is stochastically dominated by vol(Ci). Hence, the statement of
the lemma follows directly, since it applies to vol(Ci) by Lemma 28.

Since there are at most n circles, Lemma 36 holds for all circles with probability at least
1− 2/n2.

The above arguments are combined to prove Lemma 35.

Proof of Lemma 35. Let k be the smallest integer such that Vol(Bk) " nb. We have the condi-
tions

• Vol(Bk) " nb,

• Vol(coreγ′(,w)) " |coreγ′(,w)|nγ′ = nγ+γ′ , and

• Vol(G) ! τ−1
τ−2n (Lemma 24).

From Equation (5.3),

nb−γ′(τ−2) > 2
τ − 1
τ − 2

lnn.

Since the edges between Bk and coreγ′(,w) have not been revealed yet, Lemma 23 can be
applied. Due to Lemma 23, there is an edge between Bk and coreγ′(,w) with probability at least
1 − 1/n2. By Lemma 33, coreγ′(,w) ⊆ coreγ′(G) with probability at least 1 − 1/n2. Hence
Bcore(u) ⊆ Bk with probability at least 1− 2/n2.

In the following, we bound the size of Bk. Lemma 36 holds for all circles with high probability.
In our case,

Vol(Ck−1) ! Vol(Bk−1) < nb.

By Lemma 36, |Ck| ! Ek−1 ! 4nb with probability at least 1− 1/n2. Then,

|Bk| = |Bk−1|+ |Ck| ! Vol(Bk−1) + |Ck| ! 5nb.
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Since Bcore(u) ⊆ Bk with probability at least 1− 2/n2, we have

|E(Bcore(u))| = O(vol(Bk−1(u))) = O
(

k−1∑

i=0

Ei

)

with probability at least 1− 2/n2.
By Lemma 36, with probability at least 1− 1/n2, for all i,

Ei ! 4 · 192 lnn + 4Vol(Ci).

Since k ! nb, with probability at least 1− 3/n2,

|E(Bcore(u))| = O
(

k−1∑

i=0

Ei

)

= O(4 · 192nb lnn + 4Vol(Bk−1))
= O(nb lg n).

This concludes the proof.

5.4.3 Assembly

The core coreγ′(G) has size Θ(nγ) with probability at least 1 − 1/n2 (Lemma 34) and all balls
Bcore(u) have size O(nγ) with probability at least 1− 3/n2 (Lemma 35). Therefore, we have the
following result.

Proof of Lemma 32. Our algorithm is deterministic. The expected time (space) complexity is the
average running time (space) of our algorithm over all graphs from the random graph distribution
RPLG(n, τ).

Given a graph G with n nodes and m edges, our algorithm computes the core coreγ′(G) of
G with time complexity O(m + n lg n). It runs a complete breadth-first search for each node
of the core in time O(m). Due to the condition of Lemma 32, Equation (5.3) is satisfied. Let
Bcore(u) denote the ball computed in our algorithm for vertex u. Let T (Bcore(u)) denote the
time to compute Bcore(u). Therefore, the time complexity TC and space complexity SC of our
algorithm are at most

TC(G) = O



m · |coreγ′(G)|+
∑

v∈V (G)

T (Bcore(u))



 ,
!" #$5.4

SC(G) = O



n · |coreγ′(G)|+
∑

v∈V (G)

|Bcore(u)|



 .
!" #$5.5

Let b = γ′(τ − 2) + (2τ−3)ε
τ−1 . By Lemma 35, SC is at most O(n1+b) with probability at least

1−3/n2. The time to compute Bcore(u) is linear in the number of internal edges in Bcore(u), since
the graph is unweighted and the distance from u to the core has been determined before computing
Bcore(u). By Lemma 35, TC = O(n1+b) with probability at least 1− 3/n2.

We now know that with probability at least 1− 5/n2, all of the following conditions are true:
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1. m = Θ(n) (Corollary 29);

2. |coreγ′(G)| = Θ(nγ) (Lemma 34);

3. |Bcore(u)| = O(nb) for all vertices u (Lemma 35);

4. T (Bcore(u)) = O(nb lg n) for all vertices u (Lemma 35).

Therefore, from Equations 5.4 and 5.5, we know that with probability at least 1 − 5/n2, the
space complexity of our algorithm is O(n1+γ + n1+b) and the time complexity is O(n1+γ +
n1+b lg n).

Finally, we fix the parameters to obtain a balanced scheme. In a balanced scheme, the core
size and the expected ball sizes are asymptotically equivalent, that is, b = γ. Together with

b = γ′(τ − 2) +
(2τ − 3)ε

τ − 1

and γ′ = 1−γ
τ−1 , we have

γ =
τ − 2
2τ − 3

+ ε.

Therefore, assuming that Equation (5.3) is satisfied, the space requirement per node is O(nγ lg n)
bits and the total preprocessing time is bounded by O(n1+γ lg n), which holds with probability at
least 1− 1/n.

5.5 Conclusion and Open Problems

Theorem 30 implies that distances and shortest paths in random power-law graphs can be approx-
imated efficiently. For power-law exponents close to 2, the expected space consumption is close
to linear. The extension of the algorithms for distance oracles to compact routing schemes indi-
cates that the routing scheme by Thorup and Zwick [TZ01] may be very efficient on Internet-like
network topologies.

Edge-weighted Graphs

The algorithm and the proof currently only apply to unweighted graphs. It seems difficult to extend
our distance oracle to graphs with worst-case weights. An adversary could assign all edges within
the core and within the fringe (all nodes outside the core) infinitesimal values, and edges between
the core and the fringe to large values. With these weight values, all balls of nodes in the fringe
span the whole fringe. Since the fringe size is linear in the number of nodes, the distance oracle
would have O(n2) space. It may be interesting to investigate the case where weights are random.

General Stretch Parameter k

Currently, the adaptation of the distance oracle of Thorup and Zwick [TZ05] works for the stretch
parameter k = 2 only. An extension to general k seems feasible but with our proof technique, the
space requirements for constant k would remain O(n1+ε) for some ε > 0.
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Stretch

An important open question targets the stretch of the distance oracle. If a distance oracle is used
as a component to distinguish between close and far entities in a complex network, the stretch is
very important. Since the diameter of random power-law graphs is O(lg n), the stretch should be
as small as possible to guarantee meaningful estimates. While stretch (3, 0) is best possible for
general graphs and distance oracles with O(n3/2) space, we prove (Theorem 30) that it is possible
to significantly reduce the space for power-law graphs. For Erdős-Rényi random graphs, stretch
(2, 0) has been achieved with space consumption of Õ(n7/4) [EWG08] (see Section 3.1.3). Is it
possible to reduce both space and stretch?

Different Models

As mentioned in Section 2.1.3, there are many different models for complex networks. Our anal-
ysis only works for the adapted random graph model by Aiello, Chung, and Lu [ACL00]. Other
models such as the configuration model [BBK72] and the preferential attachment model [BA99]
may also have efficient distance oracles.
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The best theory is inspired by prac-
tice and the best practice is inspired
by theory.

Donald Knuth [Knu89] 6
Approximating Shortest Paths

Using Voronoi Duals

6.1 Introduction

The main result of this chapter is an approximation method to answer shortest path queries in gen-
eral, undirected graphs with positive edge weights, based on random sampling and graph Voronoi
duals [Meh88, Erw00]. In preprocessing, each node is selected as a Voronoi site independently at
random with probability p, and the Voronoi dual is computed for the selected sites (Section 6.3).
This preprocessing step is very efficient; it takes time proportional to computing one single source
shortest path tree (Section 6.4). For p < 1, the resulting dual graph is expected to be smaller
than the original graph. At query time, search for the shortest path from source s to target t can
potentially be done faster in the Voronoi dual. We let the shortest path in the Voronoi dual guide
the search for an approximate shortest path in the original graph. We prove that the expected ap-
proximation ratio is at most logarithmic in the number of nodes on the actual shortest path, and
that this bound is tight (Section 6.5). Our experimental results show that, in practice, the approx-
imation is much better than the stated theoretical bound and that the preprocessing overhead is
indeed extremely low (Section 6.6).

Many practical shortest path query methods are tailored for road networks (Section 3.2.3).
There has been considerable recent progress: for the road networks of Europe or the USA, using
a high-performance computer, a speedup of several orders of magnitude compared to Dijkstra’s
algorithm can be achieved with a preprocessing time in the tens of minutes [DSSW09]. Un-
fortunately, theoretical bounds on both query time and preprocessing time are often difficult to
obtain. However, even though road networks constitute the most common and popular application
of shortest path query algorithms to date, other challenging applications exist. Computer net-
works, social networks, protein interaction networks, and the web graph exhibit different degree
and structural properties, and may contain hundreds of millions or even billions of nodes. In spe-
cific cases, a user might be willing to trade preprocessing time against exactness due to the vast
size of the data or due to restricted processing power (Section 1.2.2). These scenarios may require
the use of a fast approximation method.

Related methods. Kambara and Ueshima [KU08] independently propose a method (without
analysis) that appears to be closely related to the method we present in this chapter. Fang et
al. [FGG+05] use graph Voronoi diagrams for routing in sensor networks. Yu et al. [YWD08] use
Voronoi paths to bridge communication gaps in sparse sensor networks. Chan and Efrat [CE01]
solve the cheapest path problem for flight connections in R2. Their method runs Dijkstra’s algo-
rithm on the Delaunay triangulation with respect to a superquadratic cost function R2×R2 → R+.
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6.2 Preliminaries

6.2.1 Graph Voronoi Diagram

The classical Voronoi diagram is a distance-based decomposition of a metric space relative to a
discrete set, the Voronoi sites [Dir50, Vor07].1 For a survey on this fundamental structure, we refer
to [Aur91]. Among many applications, the Voronoi diagram is often used to solve facility location
problems [Sha75, ACS99, AGK+04, GKP05, Svi08, Sug09]. The Voronoi diagram and the Delau-
nay triangulation of n points in the plane can be computed in expected time n ·2O(

√
lg lg n) [CP07],

which is even faster than O(n lg n).
Mehlhorn [Meh88] and Erwig [Erw00] proposed an analogous decomposition, the Graph Vo-

ronoi Diagram, for undirected and directed graphs respectively. Since the Voronoi diagram for
the Euclidean space is used for various applications, its graph counterpart, the graph Voronoi dia-
gram, may be used for these applications if the underlying metric is the shortest path metric of a
graph [OSF+08].

Real-world distances or travelling times can be approximated more appropriately using mod-
els based on weighted graphs. In general, non-planar networks such as social networks, com-
puter networks, protein interaction networks, and the web graph cannot be embedded into a low-
dimensional Euclidean space without significant distortion.

Definition 39 (Graph Voronoi Diagram [Meh88, Erw00]). In a graph G = (V,E,w), the Voronoi
diagram for a set of nodes K = {v1, . . . , vk} ⊆ V is a disjoint partition Vor(G,K) := {V1, . . . , Vk}
of V such that for each node u ∈ Vi, d(u, vi) ! d(u, vj) for all j ∈ {1, . . . , k}.

The Vi are called Voronoi regions. The graph Voronoi diagram is not necessarily unique, as a
node u may have the same distance to more than one Voronoi node. Let vor(u) denote the index i
of the Voronoi region Vi containing u; that is, vor(u) = i ⇔ u ∈ Vi.

Analogously to the Delaunay triangulation dual for classical Voronoi diagrams of point sets,
we define the Voronoi dual for graphs.

Definition 40. Let G = (V,E,w) be an edge-weighted graph and VorG,K its Voronoi diagram.
The Voronoi dual is the graph G∗ = (K, E∗,w∗) with edgeset E∗ := {(vi, vj) : vi, vj ∈
K and ∃u ∈ Vi ∧ ∃w ∈ Vj : (u, w) ∈ E}, and edge weights

w∗(vi, vj) := min
u∈Vi,w∈Vj

(u,w)∈E

{d(vi, u) + w(u, w) + d(w, vj)}.

By contracting edges on the shortest paths connecting Voronoi nodes, one can see that G∗ is a
minor of G (see for example Wolff [Wol08, Lemma 4]; minors are defined in Definition 21).

Figure 6.1 illustrates a Voronoi diagram and a graph Voronoi diagram. Although the classical
Voronoi dual of a non-degenerate set of points in the plane is always a triangulation, the graph
Voronoi dual is not necessarily a triangulation, even for planar graphs. For example, a graph
Voronoi dual may have nodes whose removal would disconnect the graph.

1More folklore in the style of Erdős-numbers: according to the Mathematics Genealogy Project, available online
at genealogy.math.ndsu.nodak.edu, there is a tree path in the advisor graph from Dirichlet to my mentor
and collaborator on the Voronoi method, Michael E. Houle: Gustav Peter Lejeune Dirichlet – Rudolf Otto Sigismund
Lipschitz – Christian Felix Klein – Carl Louis Ferdinand Lindemann – Arnold Johannes Wilhelm Sommerfeld – Ernst
Adolph Guillemin – Samuel Jefferson Mason – Robert Wellington Donaldson – Godfried Theodore Patrick Toussaint
– Michael Edward Houle.
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Figure 6.1: The Voronoi diagram and the Delaunay triangulation of the plane for a set of Vo-
ronoi sites {A, B, . . . G} and the graph Voronoi diagram and its dual for a set of Voronoi nodes
{A, B, . . . G} in an unweighted graph (note that the graph Voronoi dual is not necessarily a trian-
gulation).

Erwig [Erw00, Theorem 2] showed that the graph Voronoi diagram can be constructed with
a single Dijkstra search in time O(m + n · lg n). A heap is used to store the shortest path dis-
tances from nodes to their closest Voronoi node. The heap is initialized to store the Voronoi nodes
themselves. Thereafter, as long as there are nodes in the queue, the minimum is extracted from
the heap and processed (or ‘settled’) by assigning to it a Voronoi region, storing the distance
to its Voronoi node, and adding to or updating its neighbors in the queue. We slightly modify
this construction of the Voronoi diagram [Erw00, Section 3.1] to compute the Voronoi dual —
that is, to also compute E∗ and w∗. Whenever a node u is settled in the Dijkstra search, for
all its settled neighbors u′ of different Voronoi regions, the edge (v∗vor(u), v

∗
vor(u′)) with weight

wG∗(v∗vor(u), v
∗
vor(u′)) = dG(vvor(u), u) + wG(u, u′) + dG(u′, vvor(u′)) is added, or its length is

decreased if there already is an edge in G∗ representing a longer path in G. This modification of
Erwig’s algorithm is shown as Algorithm 5.

In the analysis to follow (in Section 6.5) we move back and forth between a graph and its dual.
For this we need the following definitions.

Definition 41. Given a path P = (u0, u1, . . . , uh), the Voronoi path of P is the sequence of
vertices P ∗ = (vvor(u0), vvor(u1), . . . , vvor(uh)).

Note that the Voronoi path P ∗ may not necessarily be simple, as multiple consecutive occur-
rences of nodes vvor(ui) are possible in P ∗. They are treated as a single occurrence, and such paths
are deemed to be equivalent.

Lemma 37. For any path P = (u0, . . . , uh) in an undirected graph G = (V,E,w), the corre-
sponding Voronoi path P ∗ exists and is unique.
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Algorithm 5 ComputeVoronoiDual(G = (V,E), K ⊆ V )
1: V ′ := V ∪ {v0}, E′ := E
2: i := 1
3: for u ∈ K do
4: vi := u
5: vor(vi) := i
6: E′ := E′ ∪ {{v0, u}}
7: i := i + 1
8: end for
9: HEAP.put(v0)

10: while ¬HEAP.empty do
11: ucur := HEAP.extractMin
12: for u ∈ Γ(ucur) do
13: if vor(u) = undefined then
14: vor(u) := vor(ucur)
15: HEAP.insert(u, d(v0, ucur) + w(ucur, u))
16: else if d(v0, ucur) + w(ucur, u) < d(v0, u) then
17: vor(u) := vor(ucur)
18: HEAP.decreaseKey(u, d(v0, ucur) + w(ucur, u))
19: else if ¬HEAP.contains(u) and vor(u) *= vor(ucur) then
20: if (vvor(ucur), vvor(u)) *∈ E∗ then
21: E∗ := E∗ ∪ {(vvor(ucur), vvor(u))}
22: w∗(vvor(ucur), vvor(u)) := ∞
23: end if
24: if w∗(vvor(ucur), vvor(u)) > d(vvor(ucur), ucur) + w(ucur, u) + d(u, vvor(u)) then
25: w∗(vvor(ucur), vvor(u)) := d(vvor(ucur), ucur) + w(ucur, u) + d(u, vvor(u))
26: end if
27: end if
28: end for
29: end while

Proof. Suppose that there is no such path P ∗ in G∗. This implies that there exist pairs of nodes
ui, ui+1 on the path P for which vvor(ui) *= vvor(ui+1) and (vvor(ui), vvor(ui+1)) /∈ E∗. As ui, ui+1

are consecutive nodes on the path P , we know that (ui, ui+1) ∈ E. This contradicts the definition
of the Voronoi dual (Def. 40), since (ui, ui+1) ∈ E and vvor(ui) *= vvor(ui+1) together imply that
(vvor(ui), vvor(ui+1)) ∈ E∗. P ∗ is unique since each node ui on the path belongs to exactly one
Voronoi region, corresponding to exactly one Voronoi node vvor(ui).

Definition 42. For a path P ∗ in the Voronoi dual G∗ of a graph G, the Voronoi sleeve is the
subgraph of G induced by the nodes in the union of all Voronoi regions Vi for which its Voronoi
node vi lies on P ∗,

Sleeve(G,G∗)(P ∗) := G




⋃

vi∈P ∗

Vi



 .

The Voronoi sleeve is related to a subgraph sometimes termed corridor.
With the definitions at hand we can now state the approximation method.
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6.3 The Voronoi Method

This section describes the preprocessing and query algorithms of the Voronoi method. Both algo-
rithms are conceptually very simple and thus easy to implement.

In preprocessing, each node is selected as a Voronoi site independently at random with prob-
ability p, and the Voronoi dual is computed for the selected sites (Algorithm 6). For the sake of
exposition, we treat the computation of the Voronoi dual as a ‘black box’, denoted by Compute
VoronoiDual.

Algorithm 6 Preprocessing
Input: graph G = (V,E,w), sampling rate p ∈ [0, 1].
Output: Voronoi dual G∗ with Voronoi nodes selected independently at random with probability p.

1: Random sampling: Generate the set of Voronoi nodes by selecting each node of V indepen-
dently at random: ∀v ∈ V,Pr[v ∈ K] = p.

2: Compute a Voronoi dual G∗ = (K, E∗,w∗) using the modified version of Erwig’s algo-
rithm [Erw00, Section 3.1] as shown in Algorithm 5.
G∗:=ComputeVoronoiDual(G, K)

3: Return G∗.

Lemma 38. For a graph G = (V,E) with n := |V | and m := |E|, Algorithm 6 takes time
proportional to that of Dijkstra’s single source shortest path algorithm.

Proof. Erwig’s variant of Dijkstra’s algorithm computes the graph Voronoi diagram in a worst-
case time proportional to Dijkstra’s algorithm [Erw00, Theorem 2]. The only modification of
Algorithm 5 compared to Erwig’s variant is the following: for each node, at the time it is settled,
all its neighbors are inspected. Therefore, each edge is additionally considered two times in total.
This yields the same asymptotic running time.

The preprocessing time complexity is proportional to the cost of computing one single source
shortest path tree. Details are discussed in Section 6.4.

At query time, given a graph G and its Voronoi dual G∗, we answer (approximate) shortest path
queries between source s and target t, by first searching for a shortest path SPG∗(vvor(s), vvor(t)) in
the smaller Voronoi dual G∗. This path determines the sleeve S = Sleeve(SPG∗(vvor(s), vvor(t))),
whose shortest path SPS(s, t) approximates the shortest path SPG(s, t) in G. The shortest path in
the Voronoi dual guides the Dijkstra search in the original graph. For a pseudo-code description,
see Algorithm 7; for an illustration, see Figure 6.2.

The running time of Algorithm 7 depends on G and p. Let N∗ and M∗ denote the random
variables measuring the number of nodes and edges of the Voronoi dual. Clearly E[N∗] = p · n.
The expected query time without refinement (computing the shortest path in the Voronoi sleeve) is
at most O(N∗ lg N∗ + M∗). The time for the refinement step depends on the size of the Voronoi
sleeve. The analysis will show that the refinement step is not necessary for the approximation ratio
to hold for long distance queries; however, it makes a practical difference for the quality of paths.
For p = O(n−2/3), E[N∗] = O(n1/3), and thus we can afford to compute all-pairs shortest path
distances in the Voronoi dual G∗ in overall linear expected time. This allows for constant-time
approximate distance queries.
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Algorithm 7 Query
Input: Graph G, Voronoi dual G∗, Source s, Target t.
Output: an approximate shortest path P from s to t.

1: Find Voronoi source vvor(s) from s and Voronoi target vvor(t) from t. If thereby a shortest path
SPG(s, t) has been found, return it.

2: Compute a shortest path from vvor(s) to vvor(t) in the Voronoi dual G∗: SPG∗(vvor(s), vvor(t)).
3: Compute the Voronoi sleeve

S := Sleeve(SPG∗(vvor(s), vvor(t))).

4: Compute a shortest path from s to t in the Voronoi sleeve, SPS(s, t).
5: Return P = SPS(s, t).
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Figure 6.2: Illustration of the query algorithm of the Voronoi method. Left to right, top to bottom:
(1) the original shortest path, (2) shortest path in the (weighted) dual, (3) sleeve, and (4) shortest
path in the sleeve

6.4 Computational Complexity

In this section we study the cost of computing a Voronoi dual. Recall that in Erwig’s algo-
rithm [Erw00, Section 3.1] the graph Voronoi diagram is constructed with a single Dijkstra search.
A heap is used to store the shortest path distances from nodes to their closest Voronoi node. Con-
ceptually, a dummy node with a zero-weighted edge to each of the Voronoi nodes is added, the
dummy node is inserted into the heap, and the Dijkstra single source shortest path search is ex-
ecuted. The running times of different implementations of Dijkstra’s algorithm depend on the
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priority queue employed (see Table 2.5). Using Fibonacci heaps [FT87], Dijkstra’s algorithm
takes time O(m + n lg n).

Erwig also claims a time lower bound of Ω(max(n, (n − k) lg k)) [Erw00, Theorem 1]. The
lower bound simplifies to Ω(n lg n) when the number of Voronoi nodes is assumed to be k = nC

for a fixed choice of C ∈ (0, 1). Assuming that all edges must be inspected at construction time,
this lower bound would be tight. The bound is information theoretic: for a connected graph, each
node w ∈ V \ K is in exactly one of the k regions Vi. Encoding one instance out of these kn−k

possibilities requires lg kn−k = (n− k) lg k bits.
For some graphs with special properties, Erwig’s lower bound may not apply. Eppstein and

Goodrich [EG08] presented a linear-time algorithm to compute the Voronoi diagram for road net-
works satisfying certain geometric properties. Also, the lower bound may not hold under different
models of computation, such as the word RAM model. This model assumes that basic operations
such as adding two words requires a single time step, and that the time compexity is the number
of word operations executed. The space complexity is the number of words of storage required,
assuming that any identifier (such as a node label) or value (such as a distance) can be contained
in a single word. Under the word RAM model, the implementation of Dijkstra’s algorithm by
Thorup [Tho04b] requires only O(m + n lg lg n)–time.

Corollary 39. The graph Voronoi dual can be computed in time O(m + n lg lg n) in the word
RAM model.

Note that the time upper bound under the word RAM model does not contradict Erwig’s
information-theoretic lower bound [Erw00, Theorem 1] of Ω(n lg n) bits.

Computing a graph Voronoi dual does not actually require the use of Dijkstra’s algorithm —
any single source shortest path algorithm (including parallel and distributed algorithms) can be
used to compute a graph Voronoi dual as follows. Instead of an adapted Dijkstra search, we may
also

1. augment G by introducing a dummy node v0 connected to each of the Voronoi nodes with
an edge of length zero,

2. run any single source shortest path algorithm in the augmented graph G′ with v0 as its
source, and

3. explore the search tree rooted at v0 by following shortest path edges only.

This last step simulates a Dijkstra search by following the single source shortest path tree without
using any expensive decrease-key operations (these operations have to be avoided to reduce the
worst-case running time [Tho00b, Tho07]); a First-In-First-Out queue with constant time for the
enqueue and dequeue operations is sufficient. For a pseudo-code description, see Algorithm 8.
Although the construction is mainly of theoretical interest, it may be useful for example for parallel
or distributed algorithms and for software that must rely on certain libraries.

Note that, if a single source shortest path algorithmAworks for a special class of graphs G, the
augmented graph G′ may not necessarily be in G, and thus algorithm A cannot be used in general.
For example, for planar graphs, the O(n)–time algorithm of Henzinger et al. [HKRS97] cannot
be applied directly to compute the Voronoi diagram since planarity may be violated by adding a
dummy node. In the particular case of the algorithm of Henzinger et al., however, the analysis of
the running time depends on separators, which seem to admit the introduction of a dummy node.
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Algorithm 8 ComputeVoronoiDual(G = (V,E), K ⊆ V )
1: Let G′ := (V ′, E′) with V ′ = V ∪ {v0} and E′ = E ∪ {(v0, v) : v ∈ K} with w′(v0, v) = δ

(one would set δ = 0 if possible; if only positive edge are allowed, other values work as well)

2: D := SSSP(G′, v0), where D is the distance vector storing the distance from v0 to each node
u ∈ V ′

3: for i := 1 to k = |K| do
4: vor(vi) := i
5: FIFO.enqueue(vi)
6: end for
7: while ¬FIFO.empty do
8: ucur := FIFO.dequeue
9: for u ∈ Γ(ucur) do

10: if D(u) = D(ucur) + w(u, ucur) and vor(u) = undef then
11: vor(u) := vor(ucur)
12: FIFO.enqueue(u)
13: else if vor(u) *= undef and vor(u) *= vor(ucur) then
14: if (vvor(ucur), vvor(u)) *∈ E∗ then
15: E∗ := E∗ ∪ {(vvor(ucur), vvor(u))}
16: w∗(vvor(ucur), vvor(u)) := ∞
17: end if
18: if w∗(vvor(ucur), vvor(u)) > D(v0, ucur)− δ + w(ucur, u) +D(u, v0)− δ then
19: w∗(vvor(ucur), vvor(u)) := D(v0, ucur)− δ + w(ucur, u) +D(u, v0)− δ
20: end if
21: end if
22: end for
23: end while

Theorem 40. Using any single source shortest path algorithm for general graphs with running
time S(n, m,W ), Algorithm 8 computes a graph Voronoi dual in time O(n + m + S(n, m,W )).

Proof. After running the SSSP algorithm in time S(n, m,W ), Algorithm 8 visits every node
exactly once and every edge exactly twice (once for each end point).

For undirected graphs with integer or floating point weights, we may use theO(m)–time SSSP
algorithm of Thorup [Tho99, Tho00a].

Corollary 41. For undirected graphs with integer or floating point weights, the graph Voronoi
dual can be computed in time O(m + n) in the word RAM model.

For real weights and undirected graphs, we may use the O(m + n lg lg n)–time algorithm of
Pettie and Ramachandran [PR02].

Corollary 42. For undirected graphs with real weights, the graph Voronoi dual can be computed
in time O(m + n lg lg n).

For road networks, we may use the linear-time algorithm of Eppstein and Goodrich [EG08].
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Practical considerations. Note that storing each Voronoi node twice, once as a graph node and
once as a dual node, causes unnecessary additional space consumption. However, when both the
original graph and the dual graph are stored in the same structure, searching the dual could result
in a substantial number of cache misses, since Voronoi nodes are roughly 1/p positions apart.
Adapting the memory organization by reordering the nodes such that the memory locations used
for Voronoi nodes are close together may potentially increase the cache efficiency [GKW07].

6.5 Stretch Analysis

In this section, we prove that the expected path length approximation ratio (stretch) is logarithmic
in the number of edges of an exact shortest path. The bound on the stretch is the main theoretical
result of this chapter.

In this section, to simplify notation, we only consider the multiplicative stretch α. We write
stretch α instead of stretch (α, 0) as originally defined in Definition 30.

Theorem 43. For shortest paths having h edges, Algorithm 7, given a graph and its Voronoi dual
with sampling rate p (constructed by Algorithm 6), has expected worst-case stretchO(lg1/(1−p) h).

The path SPS(s, t) found by the algorithm is an approximation, since it is possible that no
actual shortest path SPG(s, t) lies entirely within the Voronoi sleeve S. We explain how this is
possible, and give an upper bound on the expected length +(SPS(s, t)). For this purpose, we
prove relationships between the lengths of simple paths P and their corresponding Voronoi paths
P ∗. The stretch of a path P ∗ depends on the number and distribution of Voronoi nodes on the path
P . In particular, the stretch depends linearly on the largest interval between two Voronoi nodes on
the path.

Definition 43. For a path P = (u0, u1, . . . , uh) in a graph G = (V,E,w), and a set of Voronoi
nodes K ⊆ V , two Voronoi nodes vi, vj on P are called consecutive if the subpath between vi

and vj does not contain another Voronoi node. The gap g between two consecutive Voronoi nodes
on the path is defined as the number of edges of this subpath. The largest gap of a path is the
maximum over all gaps between two consecutive Voronoi nodes on the path.

To simplify the analysis, we initially assume that s and t are Voronoi nodes. Later, we will
relax this restriction.

We wish to prove that the stretch is at most the size of the largest gap h̄ between two Voronoi
nodes on the path SPG(s, t). For the analysis we fix a shortest path SPG(s, t) from s to t, say
(s, u1, u2, . . . , uh−1, t). If the corresponding Voronoi path (SPG(s, t))∗ is a shortest path from s
to t in the Voronoi dual, then the Voronoi sleeve S also contains SPG(s, t). Figure 6.3 gives an
example for which (SPG(s, t))∗ is not a shortest path in the dual.

In Lemma 44, for any simple path P , we give a worst-case bound on the length of the cor-
responding Voronoi path. P ∗ can have maximal stretch if there is no Voronoi node among the
intermediate nodes and the corresponding Voronoi nodes have maximal distance (while still satis-
fying the Voronoi condition).

Lemma 44. Given a simple path P = (s, u1, . . . , uh−1, t) between two Voronoi nodes s = u0

and t = uh with h edges and length +(P ), the corresponding Voronoi path P ∗ in the Voronoi dual
G∗ has at most length +(P ∗) ! h · +(P ). This upper bound is tight.
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Proof. The path contains h − 1 intermediate nodes and h edges and therefore passes through at
most h+1 different Voronoi regions. Out of these, at most h− 1 regions are ‘interfering’ regions,
meaning that the original shortest path does not lead through the corresponding Voronoi nodes but
the shortest Voronoi path does. The path length +(P ) in the original graph is the sum of the edge
weights +(P ) := d(s, t) =

∑h−1
k=0 w(uk, uk+1). The length d∗(vvor(uk), vvor(uk+1)) of an edge

between two Voronoi nodes on the path P ∗ can be bounded as follows (see Figure 6.4):

d∗(vvor(uk), vvor(uk+1)) ! d(vvor(uk), uk) + w(uk, uk+1) + d(uk+1, vvor(uk+1))

From the Voronoi condition, we observe that d(uk, vvor(uk)) ! d(uk, vvor(uj)) for all j. Due to
the assumption that s and t are also Voronoi nodes, this also holds for source and target. That is,

d(uk, vvor(uk)) ! d(s, uk)
d(uk, vvor(uk)) ! d(uk, t)

= d(vvor(uk), uk)

This yields:

+(P ∗) ! d∗(s, t) = d∗(s, vvor(u1))

+
h−2∑

k=1

[
d(vvor(uk), uk) + w(uk, uk+1)+d(uk+1, vvor(uk+1))

]

+d∗(vvor(uh−1), t)
! w(s, u1) + d(u1, vvor(u1))

+
h−2∑

k=1

[
d(vvor(uk), uk) + d(uk+1, vvor(uk+1))

]

+
h−2∑

k=1

w(uk, uk+1)

+d(vvor(uh−1), uh−1) + w(uh−1, t)

! d(s, t) +
h−1∑

k=1

[
d(s, uk) + d(uk, t)

]

= h · +(P )

There exist constructions for which the bound can be shown to be tight. For example, for any
choice of a > ε > 0, the edge weights of G may be chosen such that d(uk, vvor(uk)) = a − ε,
w(uk, uk+1) = ε, and w(s, u1) = w(uh−1, t) = a. Path P has length 2a + (h − 2)ε, and the
Voronoi path P ∗ has length 2a + (h− 2)ε + 2(h− 1) · (a− ε). The worst case is attained for very
small ε. As ε → 0, the ratio +(P ∗)/+(P ) → h.

If in addition to the endpoints there are Voronoi nodes on the shortest path, the maximum
stretch is guaranteed to be smaller than the number of edges on the shortest path. In the following
lemma, we prove that the maximum stretch is proportional to the largest gap between Voronoi
nodes on the path. The proof is a simple composition of Lemma 44, and is supported by the
illustration in Figure 6.4.
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Figure 6.3: s, t, and vi are Voronoi nodes. The shortest path from s to t leads through u, which
is in vi’s Voronoi region (if c < a and c < b), and paths in the Voronoi dual pass through vi.
If + < a + b + 2c, the shortest path in the Voronoi dual SPG∗ takes the left-hand route, and the
Voronoi sleeve S does not contain u.
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Figure 6.4: The shortest path between two Voronoi nodes s and t with h− 1 intermediate nodes
u1, . . . , uh−1. The distance between two Voronoi nodes that are adjacent in the Voronoi dual is at
most w∗(vvor(uk), vvor(uk+1)) ! d(vvor(uk), uk) + w(uk, uk+1) + d(uk+1, vvor(uk+1)).

Lemma 45. Let P = (vi, u1, . . . , uh−1, vj) be a simple path of length +(P ) between two Voronoi
nodes vi = u0 and vj = uh. Let h̄ denote the largest gap of P . The corresponding Voronoi path
P ∗ in the Voronoi dual G∗ has at most length +(P ∗) ! h̄ · +(P ). This upper bound is tight.
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Proof. Suppose there are 2+ν Voronoi nodes uk = vvor(uk) on the path. The remaining h−1−ν
nodes are non-Voronoi nodes. We cut the path P into subpaths Pk between Voronoi nodes. Let
hk denote the number of edges between two consecutive Voronoi nodes, which is the number
of edges of Pk. The Voronoi path is composed of 1 + ν segments Pk between Voronoi nodes
(
∑ν

k=0 +(Pk) = P ,
∑ν

k=0 hk = h, ∀k : hk ! h̄). Composition of Lemma 44 leads to the
following bound on the path length:

ν∑

k=0

hk+(Pk) !
ν∑

k=0

max
κ∈{0,...,ν}

hκ+(Pk) ! h̄ · +(P ).

Tightness can be shown with the same example as in the proof of Lemma 44.

Lemma 47 gives an upper bound on the expected size of the largest gap. We use the fol-
lowing lemma by Szpankowski and Rego [SR90] concerning the maximum of geometric random
variables.

Lemma 46 (Szpankowski and Rego [SR90, eq. (2.6) and (2.12)]). Let Xi, i = 1, 2, . . . , n be a
set of i.i.d. random variables distributed according to the geometric distribution with parameter
p. That is, for every i = 1, 2, . . . , n and k ∈ N+,

Pr[Xi = k] = (1− p)k−1p

E[Xi] = p−1

E[X2
i ] = (2− p)p−2.

Let Mn = max{X1, X2, . . . ,Xn}. The expected value of Mn is

E[Mn] = −
n∑

k=1

(−1)k

(
n

k

)
1

1− (1− p)k

= lg1/(1−p) n +O(1).

Lemma 47. In a path of length h− 1, where each node has been selected as a Voronoi node inde-
pendently at random with probability p, the longest sequence of non-Voronoi nodes is of expected
length at most O(lg1/(1−p) h).

Proof. The path can be seen as a sequence of coin tosses, for which we want to bound the ex-
pected length of the longest sequence of tails. This problem is known as the Longest Success-
Run [EMK97, Ch. 8.5]. We wish to bound the expectation of the maximum of N independent
geometric random variables with probability p and sum h − 1 − N (N itself being a random
variable).

To derive a bound on the expectation, we observe that by dropping the sum condition, and
by taking the maximum over h " N random variables, the maximum value obtained can only
increase.

As of Lemma 46, the expectation of the maximum of h geometric random variables with
probability p is known to be at most O(lg1/(1−p) h).

We now combine Lemmas 44, 45, and 47 to prove Theorem 43.
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Proof of Theorem 43. Consider first the case where s and t are both Voronoi nodes.
Let h̄ denote the largest gap of some shortest path SPG(s, t). Lemma 45 implies that the

corresponding Voronoi path (SPG(s, t))∗ has length at most h̄ · +(SPG(s, t)). Trivially, the
shortest path in the Voronoi dual is of length no more than that of the Voronoi path; that is,
+((SPG(s, t))∗) " +(SPG∗(s, t)). The path SPG∗(s, t) in the Voronoi dual corresponds to a path
P ′ of the same length in the Voronoi sleeve Sleeve(SPG∗(s, t)). Therefore,

+(SPS(s, t)) ! +(P ′)
= +(SPG∗(s, t))
! +((SPG(s, t))∗)
! h̄ · +(SPG(s, t)).

Recall that nodes are independently selected as Voronoi nodes with sampling rate p. For a shortest
path with h edges, the expected largest gap h̄ is at most O(lg1/(1−p) h) by Lemma 47.

For the case where either s or t (or both) are not Voronoi nodes, if the path returned by
Algorithm 7 has been found in Step 1, it is optimal, and the result holds trivially. For the re-
mainder of the proof we assume that the shortest path has not been found in Step 1. In this
case, the path returned is at most as long as the shortest path Pvor in G from s to t having
SPSleeve(SPG∗ (vvor(s),vvor(t)))(vvor(s), vvor(t)) as a subpath. In the following, we derive an upper
bound on +(Pvor) with respect to the number of edges on the shortest path between s and t, denoted
by h′. We have that

+(Pvor) ! d(s, vvor(s)) + d∗(vvor(s), vvor(t)) + d(vvor(t), t).

Since the shortest path from s to t has not already been found directly in Step 1, it must be true that
both d(s, vvor(s)) ! d(s, t) and d(s, vvor(s)) ! d(s, t). It remains to bound the distance between
vvor(s) and vvor(t) in the dual graph.

Observe that augmenting the graph G with one edge (u, vvor(u)) of weight d(u, vvor(u)) for
each non-Voronoi node u ∈ V \K affects neither the Voronoi diagram nor the Voronoi dual, since
the nodes on the shortest path from vvor(u) to u cannot be interfered with by another Voronoi node.

In the augmented primal graph, by the triangle inequality (for details, see Lemma 31), we have
that

d(vvor(s), vvor(t)) ! d(vvor(s), s) + d(s, t) + d(t, vvor(t)) ! 3d(s, t)

using a path with at most 1 + h′ + 1 edges. Therefore, the expected distance d∗(vvor(s), vvor(t)) is
also bounded by O(lg h′) · 3d(s, t). The bound for Pvor follows directly.

This concludes the proof of Theorem 43.

6.6 Experiments

In the following, we provide an experimental evaluation for our implementation of the Voronoi
shortest path approximation method. The preprocessing and query times are compared with those
of Dijkstra’s algorithm and with those of related but exact methods.

6.6.1 Algorithms

Benchmarking

As the methods in our study were developed and compiled on different computers and architec-
tures, a direct comparison with reported query times would not be meaningful. We measure the

109



CHAPTER 6. APPROXIMATING SHORTEST PATHS USING VORONOI DUALS

performance of the methods against the bidirectional version of Dijkstra’s algorithm, in terms of
the ratio of the number of nodes settled by Dijkstra’s algorithm over the number of nodes settled
by the Voronoi method. This ratio, which we will refer to as the speedup of the method, can be
used to evaluate the performance of Steps 1, 2, and 4 of Algorithm 7. In addition, we count the
number of marked regions to account for Step 3.

The use of the Voronoi sleeve in Steps 3 and 4 of Algorithm 7 leads to practical improvements
in accuracy; however, the example in Figure 6.3 shows that for general graphs the worst-case
stretch does not improve. For all the experiments, we evaluate the method once using the refine-
ment step and once with these Voronoi sleeve steps omitted. For the second type of queries, the
reported distance is the sum of the distances from the query source to the Voronoi source, from the
Voronoi source to the Voronoi target, and from the Voronoi target to the query target, as computed
in Steps 1 and 2 of Algorithm 7.

Voronoi method

Our method using the Voronoi dual can be parameterized using the sampling probability p, the
value of which determines the tradeoff between approximation quality and speedup. For the eval-
uation, we consider three values of the sampling probability — p = 1/2, p = n−1/2, and p = n−2/3

— that produce Voronoi nodesets of expected sizes n/2,
√

n, and 3
√

n respectively. The variants
are referred to as VORHALF, VORROOT, and VORCUBERT.

Other methods

Sanders and Schultes [SS07a, Table 1] provide a detailed overview of methods for accelerated
point-to-point shortest path queries in road networks. Bauer et al. [BDS+08, p. 13] list another set
of methods and compare their performance on several transportation networks. We select some of
the fastest methods for comparison with our algorithm. Unless stated otherwise, we will use the
naming conventions of [SS07a, BDS+08] to refer to these methods. We give a brief description of
the methods considered. More background information can be found in Section 3.2.3.

• Highway Hierarchies (HH) [SS06] are based on the observation that a certain class of edges
(the ‘highway’ edges) tend to have greater representation among the portion of the shortest
paths that are not in the vicinity of either the source or target. A recursive computation
of these edges, paired with a contraction step, leads to a hierarchy of graphs that enables
an impressive speedup at query time. HH+dist denotes a variant of HH where all higher
levels with at most O(

√
n) nodes are replaced by a single distance table. HH+dist+A* is

HH combined with A* search and implemented with distance tables [DSSW06]. Highway
Node Routing (HNR) [SS07b] is another variant of the Highway Hierarchies strategy.

• In the same spirit as HH, Transit Node Routing (TNR) [BFM+07] identifies a set of nodes
(called ‘transit’ nodes) that often occur on shortest paths. A table storing the distances
between all pairs of these nodes allows any shortest path distance to be computed with a
small number of table look-ups. Two variants are listed: TNR-eco with economical space
consumption, and TNR-gen with generous space consumption.

• The Arc-Flag method [Lau04] computes a partition of the graph and then, for each compo-
nent and for each shortest path ending in that component, it labels the first edge. A variant of
this method, SHARC [BD08], incorporates techniques developed for Highway Hierarchies.
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• Contraction Hierarchies (CHHNR) [GSSD08] is an extension of highway hierarchies in
which the graph is further simplified using contraction operations. Many variants have been
proposed; we consider only the variant with the fastest preprocessing time, CHHNREDS1235,
and the variant with the best speedup, CHHNREVSQWL. The CHASE method [BDS+08] inte-
grates the Contraction Hierarchies and Arc-Flag methods.

• A method based on A* search by Goldberg and Harrelson [GH05], which we will refer
to as simply A*, is one of the first methods with reasonable preprocessing time and good
speedup.

• ALT-m16 [DW07] is a variant of ALT [GW05], which in turn is a combination of A*, Land-
marks, and speedup techniques based on the triangle inequality. CALT-m16 and CALT-
a64 [BDS+08] are two variants of a method that combines ALT and Contraction Hierar-
chies.

6.6.2 Data Sets

For the sake of comparison, we consider transportation networks that were used by Sanders and
Schultes [SS07a] and Bauer et al. [BDS+08, BD08] in their evaluations. In addition, to demon-
strate that our method is effective for more general graphs, we run experiments with a social
network, a citation graph, a router network, and protein interaction networks as data sets. The
node degrees of these graphs appear to follow a power-law distribution [Mit03].

Road networks

The road network of Western Europe has been made available for scientific use by the company
PTV AG. It covers 14 countries and, with its massive size of 18,010,173 nodes and 42,560,279
directed edges, it serves as an important benchmark for shortest path queries. In order to apply
the Voronoi method, we convert the graph into an undirected form. There are two different edge
weightings, one representing geographical distances and the other representing driving time. We
conduct experiments for both.

Public transportation

We also conduct experiments for three European public transportation networks: (1) long railway
connections in Europe, with 1,586,862 nodes and 2,402,352 directed edges, (2) the bus network of
the Rhein-Main-Verkehrsverbund RMV, with 2,278,066 nodes and 3,417,084 directed edges, and
(3) the bus network of the Verkehrsverbund Berlin Brandenburg VBB, with 2,600,818 nodes and
3,901,212 directed edges. The graphs considered by [BDS+08, BD08] differ slightly from those
used for experimentation with the Voronoi method.

The numbers of nodes and edges of the RMV and VBB input graphs are nearly identical;
however, the long railway graph used in our experimentation has 33% more nodes and edges than
in [BDS+08, BD08]. Again, for the Voronoi experimentation, the graphs were converted into an
undirected form.

Social networks

We extracted the DBLP computer science bibliography [Ley02] co-author graph from an official
XML version downloaded on 24 August 2008. In the graph, two authors are connected by an
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edge if they have at least one joint publication. This yielded an undirected graph, from which we
selected the largest connected component. The final graph is unweighted and consists of 511,163
nodes and 1,871,070 edges.

Router topology

CAIDA maintains data on the router-level topology of a portion of the Internet [Coo03]. After
cleaning we obtained an undirected, unweighted graph with 190,914 nodes and 607,610 edges.

Citation graph

The citations for 27,400 publications in the high energy physics research literature were used as
a data set in the KDD Cup 2003 competition [GSDF03]. From these citations, we constructed an
undirected, unweighted graph with 352,542 edges.

Protein interactions

The Database of Interacting Proteins [SMS+02] catalogs experimentally determined interactions
among proteins. We extracted the largest connected component, consisting of 19,928 nodes and
82,406 edges. BioGRID is a general repository for interaction data sets [SBR+06] from which we
extracted the largest connected component, consisting of 4,039 nodes and 43,854 edges.

6.6.3 Experimental Setting

In this section we describe the experimental setting for the Voronoi method. The implementation
is written in C++ and executed on one core of a 2x2.66 GHz Dual-Core Intel Xeon Desktop with
6 GB 800 MHz DDR2 FB-DIMM running Mac OS X 10.5.6.

Every graph was preprocessed 1, 000 times using different random seeds (250 times for the
European road networks). For these runs we report the mean value and standard deviation of
the execution time in seconds. After preprocessing, we performed 100 shortest path queries for
random (s, t) pairs. For these queries, we provide the mean values and standard deviations of
the speedup relative to the bidirectional version of Dijkstra’s algorithm, and of the multiplicative
stretch relative to a shortest path.

6.6.4 Results

Computers are useless. They can only give you answers.

Pablo Picasso (1881–1973)

Running times, speedups, and approximation qualities for the Voronoi method are listed in
Table 6.2 for transportation data sets and 6.3 for data sets concerning complex networks. The
performances of the other methods are listed in Tables 6.1 and 6.4 as originally summarized
in [SS07a, GSSD08, BDS+08].

Preprocessing

For the Voronoi method, as Lemma 38 predicts, the preprocessing cost is extremely low for all
three values of p. For the non-planar graphs, the greatest preprocessing times were observed for
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the largest value, p = 1/2. This likely reflects the logarithmic cost of the heap operations associated
with the computation of Voronoi regions. At the start of the Dijkstra search, the heap is initialized
with all neighbors of the graph Voronoi nodes. When p is large, the initial heap size is a large
proportion of the total number of nodes, and the cost of the heap operations becomes significant.
On the other hand, when p and the average node degree are both small, the heap evolves smoothly
with its size remaining small.

Speedup

For road networks VORHALF achieves moderate speedups of approximately 2, which likely re-
flects the fact that the expected number of nodes of the Voronoi dual is half that of the original
graph. For the power-law graphs, probability p = 1/2 does not lead to a significant speedup. One
reason for this might be that the Voronoi dual for each of these graphs is rather dense and, as a
consequence, the Dijkstra search in the dual explores many nodes until it can find the destination.
For the smaller probabilities, larger speedups can be observed, but the performance gain is signifi-
cantly smaller2 than the speedups obtained for almost planar networks. There, the speedup seems
proportional to 1/p. As expected, if for small values of p the sleeve is used to refine the path, the
speedup decreases drastically due to the large size of this subgraph.
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Figure 6.5: Preprocessing time versus speedup (with respect to Dijkstra’s algorithm) tradeoff for
the European road network. Plot on a doubly-logarithmic scale, y–axis reversed. Circles stand
for variants of the Voronoi method and for the related exact methods listed in Table 6.1. Transit-
Node Routing (TNR) has the best speedup and the slowest preprocessing. Contraction Hierarchies
(CHHNR) and Highway Hierarchies (HH) achieve a very good tradeoff between preprocessing
and query times. A* has short preprocessing times but rather low speedup. The Voronoi method
(Chapter 6) has the fastest preprocessing times with competitive speedups at the cost of exactness.

2Cheng and Yu [CY09] use 2–hop labels [CHKZ03] to efficiently compute exact distances. They obtain a better
speedup at the expense of a significantly longer preprocessing. For a 10 times smaller DBLP graph with 52,682 nodes
and 59,395 edges, their preprocessing step takes 20 seconds [CY09, Table 1]. At query time it outperforms Dijkstra’s
algorithm by two orders of magnitude [CY09, Figure 17 and Section 7.4].

113



CHAPTER 6. APPROXIMATING SHORTEST PATHS USING VORONOI DUALS

Stretch

The Voronoi method achieved stretch values that were surprisingly consistent among different data
sets, with most values under 2 and very close to optimal for the road networks. Figures 6.6 and 6.7
show the approximate path length versus the shortest path length, with and without the sleeve
refinement steps, respectively. The theoretical worst-case logarithmic dependency on the number
of edges cannot be observed in the experimental results. Refinement using the sleeve substantially
improves the stretch in practice, although the theoretical performance is not affected.

PTV European road network, driving time
preprocessing [s] speedup

CHHNREDS1235 [GSSD08] 602 ≈8,505
A* [GH05] 780 28
HH [SS06] 780 4,002
HH+dist [SS06] 900 8,320
HH+dist+A* [DSSW06] 1,320 11,496
HNR [SS07b] 1,440 4,079
CHHNREVSQWL [GSSD08] 1,914 ≈10,874
TNR-eco [BFM+07] 2,760 471,881
TNR-gen [BFM+07] 9,840 1,129,143

Table 6.1: Experimental results of related exact shortest path query methods for road networks.
This table is excerpted from Sanders and Schultes [SS07a, Table 1] except for CHHNR values,
which are from [GSSD08, Table 1]. Preprocessing times are converted from minutes to seconds
to ease comparison with the Voronoi method. Machines used (except for A*): 2.0 or 2.6 GHz
processor, 8 or 16 GB RAM, C++ implementation.
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method preprocessing [s] without sleeve with sleeve
speedup stretch speedup stretch

PTV European road network, driving time, 18,010,173 nodes, 42,560,279 edges
VORHALF 31.7686±4.4436 2.6061± 0.0734 1.0394±0.0131 2.5878±0.0750 1.0111±0.0062
VORROOT 40.5296±3.6423 3,518.0645± 725.2776 1.6613±0.2078 4.9991±4.9017 1.1291±0.0783
VORCUBERT 31.3372±2.8181 39,918.4988±14,207.5395 1.5544±0.4292 1.5863±1.1123 1.0405±0.0597

PTV European road network, geographical distance, 18,010,173 nodes, 42,560,279 edges
VORHALF 29.8365±4.3576 2.6266± 0.0558 1.0307±0.0095 2.5800±0.0627 1.0139±0.0057
VORROOT 34.2785±3.0609 3,672.4070± 511.1418 1.1821±0.0960 5.9212±7.9921 1.0390±0.0249
VORCUBERT 22.5531±2.0284 42,266.6442±13,530.5983 1.2882±0.5384 1.6383±1.4232 1.0141±0.0291

Public transportation, long distance railway, 1,586,862 nodes, 2,402,352 edges
VORHALF 2.0499±0.1998 1.9511± 0.1231 1.0180±0.0227 1.8972±0.1367 1.0080±0.0143
VORROOT 1.9086±0.0946 363.8390± 153.4644 1.3813±0.2848 2.8527±3.3113 1.0829±0.0971
VORCUBERT 1.7633±0.0860 2,116.0373± 1,251.1773 1.5167±0.6610 1.2599±0.5990 1.0247±0.0658

Public transportation, RMV, 2,278,066 nodes, 3,417,084 edges
VORHALF 3.7714±0.4064 1.9892± 0.1813 1.0290±0.0255 1.9315±0.1766 1.0104±0.0131
VORROOT 3.7455±0.2158 789.2912± 328.2714 1.2972±0.2591 3.1802±5.4237 1.0644±0.0864
VORCUBERT 3.4120±0.1633 5,973.7950± 3,748.1389 1.3522±0.6003 1.3089±0.9703 1.0204±0.0583

Public transportation, VBB, 2,600,818 nodes, 3,901,212 edges
VORHALF 4.1409±0.4180 1.9881± 0.6476 1.0335±0.0248 1.9313±0.5172 1.0075±0.0097
VORROOT 4.0242±0.2914 866.8917± 405.4821 1.4042±0.2516 3.7864±7.6010 1.0834±0.1000
VORCUBERT 3.7145±0.2333 7,373.2971± 4,742.2783 1.4375±3.3690 1.3427±1.2759 1.0244±0.0660

Table 6.2: Experimental results for the Voronoi method on transportation networks.
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method preprocessing [s] without sleeve with sleeve
speedup stretch speedup stretch

DBLP co-authorship, 511,163 nodes, 1,871,070 edges
VORHALF 0.9145±0.0431 1.3576± 1.4690 1.2093±0.1805 1.3447± 1.4364 1.1419±0.1468
VORROOT 0.8376±0.0430 37.7082± 53.2992 1.9323±0.3591 11.4432±14.8387 1.3954±0.2850
VORCUBERT 0.6041±0.0312 143.8757±208.7946 2.0033±0.3630 9.9616±12.5412 1.2881±0.2406

CAIDA router topology, 190,914 nodes, 607,610 edges
VORHALF 0.3050±0.0154 1.3164± 1.1720 1.1810±0.1703 1.2972± 1.1074 1.1283±0.1359
VORROOT 0.1793±0.0092 42.4832± 54.6527 1.7845±0.3533 7.8865± 8.8062 1.2345±0.2175
VORCUBERT 0.1562±0.0081 135.5521±188.9479 1.8314±0.3755 6.0451± 7.1000 1.1621±0.1837

High energy physics citations, 27,400 nodes, 352,542 edges
VORHALF 0.1764±0.0100 1.6620± 1.2240 1.3179±0.2909 1.6452± 1.1544 1.2107±0.2323
VORROOT 0.0611±0.0043 40.1114± 21.9262 1.9918±0.4695 11.5248± 7.9582 1.3390±0.3286
VORCUBERT 0.0461±0.0032 101.9210± 58.6233 2.0330±0.4852 9.0423± 7.5795 1.2325±0.2750

Database of Interacting Proteins, 19,928 nodes, 82,406 edges
VORHALF 0.0117±0.0007 2.2044± 1.0637 1.1887±0.2188 2.1248± 1.0093 1.1183±0.1778
VORROOT 0.0108±0.0007 57.7343± 45.7341 1.8214±0.4084 9.1154± 6.0720 1.3216±0.3030
VORCUBERT 0.0096±0.0006 134.4816±106.4737 1.9277±0.4444 6.2541± 3.8117 1.2644±0.2703

BioGRID, 4,039 nodes, 43,854 edges
VORHALF 0.0035±0.0002 1.5086± 0.8003 1.2581±0.2718 1.3722± 0.6858 1.1334±0.1973
VORROOT 0.0025±0.0001 10.7295± 7.9563 1.8676±0.5737 3.0394± 1.9172 1.2753±0.3354
VORCUBERT 0.0024±0.0001 18.6805± 14.7570 1.9412±0.6250 2.7906± 1.7177 1.2308±0.3137

Table 6.3: Experimental results for the Voronoi method on complex networks.
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long distance rail RMV VBB
|V | 1,192,736 2,277,812 2,599,953
|E| 1,789,088 3,416,552 3,899,807

preprocessing [s] speedup preprocessing [s] speedup preprocessing [s] speedup
CALT-a64 [BDS+08] 87 291.84 191 267.11 123 459.30
CALT-m16 [BDS+08] 158 182.71 377 159.62 174 281.23
ALT-m16 [DW07] 291 20.30 556 18.91 604 23.04
CHHNR [GSSD08] 286 1,620.62 2,584 2,077.69 1,636 3,124.59
CHASE [BDS+08] 536 2,660.93 2,863 4,649.26 2,008 10,398.64
SHARC [BD08] 12,540 81.04 36,120 118.10

Table 6.4: Experimental results of related exact shortest path query methods for public transportation networks. This table is excerpted from Bauer
et al. [BDS+08, p. 13]. SHARC is evaluated in [BD08, p. 10]. The speedup is computed according to the number of settled nodes. Machines used:
2.0 or 2.6 GHz processor, 8 or 16 GB RAM, C++ implementation.
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6.7 Conclusion and Open Problems

We have presented a simple and general method based on Voronoi duals to efficiently support
shortest path queries in undirected graphs with very low preprocessing overheads and competitive
query times, at the cost of exactness. The method was shown to be effective on a variety of graph
types while remaining a reasonable alternative to existing exact methods specifically designed for
transportation networks. The results of our experiments also demonstrate that the approximation
ratio in practice is significantly better than the tight theoretical worst-case bound (Theorem 43).
The maximal distortion of paths in the graph Voronoi dual depends on the distance between nodes
in the original graph, unlike Delaunay triangulations of the Euclidean plane, which have constant
distortion [DFS90, KG92].

Although the Voronoi method is intended mainly as a practical one (and thus kept as simple
as possible to facilitate efficient implementation), let us conclude with a few remarks concerning
the theoretical performance of the Voronoi method. If logarithmic stretch is allowed, the distance
oracle of Thorup and Zwick [TZ05] achieves quasi-linear space O(n1+1/ lg n lg n) ! O(n lg n)
and query time O(lg n). With the same worst-case stretch, the query time of the Voronoi method
is much worse. However, note that the tradeoff between stretch and query time is fundamentally
different from Thorup and Zwick’s result: in the Voronoi method the long query time helps to
compute a better approximation with a better stretch. The quantitative tradeoff between query time
and stretch is probably far from optimal but intuitively this is the ‘right’ relationship. More time
should in general yield better results. Note that, in theory, the Voronoi method is also outperformed
by a distance oracle based on Bourgain’s embedding [Bou85] (Theorem 3) and the distance oracle
of Mendel and Naor [MN06]. In practice, however, the Voronoi method provides much better
stretch than the worst-case bound predicts.

It remains open as to whether the Voronoi method presented in this paper can be extended
to handle directed graphs. The nature of the Voronoi dual within a directed graph is inherently
different from the dual within an undirected graph. The need for path connectivity suggests the
construction of two Voronoi diagrams, one where reachability paths are oriented outward from
Voronoi nodes and another where reachability paths are oriented inward. As the respective Voronoi
regions may not coincide [Erw00], it is not straightforward to define a single dual structure whose
shortest path lengths approximate those of the original graph.

A natural extension is the computation of a hierarchical structure of Voronoi duals, where the
Voronoi nodes are chosen through recursive sampling. At a given level of the hierarchy, shortest
path queries within the Voronoi dual would be resolved by a recursive call one level higher in the
structure. Note that the union of all regions of different levels do not necessarily form a laminar
family [GA06]. The Voronoi sleeves may expand locally compared to the sleeve of a higher level.
A node that was not considered on a higher level of the hierarchy may be part of the sleeve in a
lower level.

At query time, the practical stretch can be improved; instead of considering the sleeve defined
by nodes on the Voronoi path only, one can also allow the query algorithm to search in neighboring
cells. Furthermore, instead of searching the path between one Voronoi source and one Voronoi
sink, one can compute paths between all Voronoi nodes close to the source and all Voronoi nodes
close to the sink. For both heuristics, the theoretical worst-case performance does not seem to
improve. However, these practical heuristics give useful parameters that may be tuned depending
on the needs of the application.
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Figure 6.6: Approximate path length versus actual shortest path length for VORROOT with sleeve
steps omitted on the European road network, distance metric. The theoretical worst-case logarith-
mic dependency on the number of edges cannot be observed in the experimental results.

Figure 6.7: Approximate path length versus actual shortest path length for VORROOT using the
sleeve on the European road network, distance metric. Refinement using the sleeve substantially
improves the stretch in practice (also compare with Figure 6.6), although the theoretical perfor-
mance is not affected.
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MODUS VIVENDI 7
Conclusion

This thesis investigates shortest path query processing in networks both from a theoretical and a
practical point of view.

Theory. We advance the theory of distance oracles in two ways.
Thorup and Zwick [TZ05] left open the important question whether, for graphs with n nodes

and m edges, the O(m) space requirements of SSSP and the O(1) query time of APSP could be
combined to obtain a distance oracle with space O(m) and query time O(1). They prove that
graphs with large girth cannot be compressed below Ω(m). One result of this thesis is to prove
that there are graphs for which O(m) space is not sufficient to answer distance queries in constant
time. The result is actually stronger: for some graphs, O(m) space is not sufficient even if the
query algorithm is allowed to return approximate distances with a small distortion. To obtain an
efficient distance oracle for general sparse graphs, an additional data structure of considerable size
is necessary. Our proof implies that a distance oracle with query time t and stretch (α, 0) requires
space roughly n1+Ω(1/αt).

Thorup and Zwick, prove that, for many integer values of k, Ω(n1+1/k) space is necessary if
distances must be approximated by a factor less than 2k + 1. For special classes of sparse graphs,
this lower bound can be circumvented [FR06, Cab06, ACC+96, Dji96, DPZ95, DPZ00, GKR04,
Tho04a, Kle02a, Kle05, AG06, AFGW10, CZ00, CLSS98, GZ05, FK07, Spr07, Tal04, ABN08,
GLNS08, AGL07, SS09, SSA09], usually by using the inherent structure of graphs in the class.
One common approach is to use separators [LT80, AST90]. Complex networks, in particular
power-law graphs, lack structure and separators. A different approach is necessary. Experimental
evidence [KFY04], however, shows that the general scheme by Thorup and Zwick with stretch
(3, 0) and space requirement O(n3/2) works well for power-law graphs, meaning that the space
requirements are significantly lower than the space requirements the tight theoretical bound would
predict. We make an attempt to bridge the gap between theory and practice by proving why the
space requirements of distance oracles for power-law graphs are indeed smaller. In networking,
there is a common and powerful heuristic to use nodes with large degrees for routing purposes.
We give a theoretical explanation why this heuristic is good for power-law graphs. Our analysis
establishes a direct connection between the exponent of the power-law degree distribution and the
space requirements of distance oracles.

Many theoretical questions remain open. Are there non-trivial distance oracles with additive
error? What is the optimal tradeoff for dynamic distance oracles? Is linear space, constant stretch,
and logarithmic query time achievable for sparse graphs? Is quadratic preprocessing time possible
(without increasing the query time)? Is there a linear-space distance oracle for planar graphs? Can
we obtain quasi-linear space and stretch less than (3, 0) for power-law graphs? Is there an efficient
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distance oracle for certain sparse directed graphs?
The major open questions for the general shortest path problem may be more difficult. Is there

a combinatorial algorithm that computes APSP in truly sub-cubic time? For general weights, can
we compute SSSP faster than APSP? Can the SSSP problem be solved in linear time without using
specific properties of the word RAM model?

Practice. A third result of this thesis is an efficient and very simple practical method to answer
approximate shortest path queries. The Voronoi method works very well on practical network
instances. Compared to related practical methods, the preprocessing overheads are lower and the
query times remain competitive — at the cost of exactness. The method is effective on a variety of
graph types. It is also a reasonable alternative to existing exact methods specifically designed for
transportation networks. For example, the Voronoi method has also been applied as a subroutine
in large-scale traffic simulations.

Practical challenges are manifold. What if a network changes? How can we take traffic [Ker04]
into account? In current nagivation systems for example, “you can pick the fastest route, the short-
est, the one that avoids motorways or a route that passes through or avoids a particular point.
Future devices will learn about a driver’s preferences and adjust accordingly” [Eco09]. For this,
efficient dynamic methods are necessary. How can we efficiently adapt the data structure?

Dynamic distance oracles are also important for social networking sites. The social graph is
changing constantly. At the same time, users and advertisers are interested in information on the
social graph.

Euler invented the graph model roughly 250 years ago, the single-source shortest path algo-
rithm of Dijkstra dates back 50 years, and Thorup and Zwick discovered the optimal distance
oracle slightly less than 10 years ago. The last a-bit-more-than-2 years of my research life have
been devoted to the investigation of shortest path query processing in networks. Some problems
have been solved, but the quest must go on.

PS: to finally answer the first question of the introduction: take the express train to Narita
airport and board a direct flight to Zurich, from where a train ride via Zurich main station brings
you to Affoltern, which is two bus stops away from Ottenbach.
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[ER60] Paul Erdős and Alfréd A. Rényi. On the evolution of random graphs. Magyar
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Mathématiques de l’Institut des Hautes Études Scientifiques, 2(1), 1959. 28

[TKE+09] Sunil Thulasidasan, Shiva Kasiviswanathan, Stephan Eidenbenz, Emanuele Galli,
Susan Mniszewski, and Philip Romero. Designing systems for large-scale,
discrete-event simulations: Experiences with the FastTrans parallel microsimu-
lator. In HiPC - International Conference on High Performance Computing, 2009.
10

[TL07] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large
graphs. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 845–856, 2007. 54, 57

[TM69] Jeffrey Travers and Stanley Milgram. An experimental study of the small world
problem. Sociometry, 32:425–443, 1969. 6

[TM80] Tadao Takaoka and Alistair Moffat. An O(n2 log log log n) expected time al-
gorithm for the all shortest distance problem. In Mathematical Foundations of
Computer Science 1980 (MFCS’80), Proceedings of the 9th Symposium, Rydzyna,
Poland, September 1-5, 1980, pages 643–655, 1980. 35

175



Bibliography

[TM92] Edouard Thiel and Annick Montanvert. Chamfer masks: discrete distance func-
tions, geometrical properties and optimization. In 11th IAPR International Con-
ference on Pattern Recognition, 1992. Vol.III. Conference C: Image, Speech and
Signal Analysis, Proceedings., pages 244–247, Aug-3 Sep 1992. 11

[Tob70] Waldo R. Tobler. A computer movie simulating urban growth in the Detroit region.
Economic Geography, 46:234–240, 1970. 7

[Tsi95] John N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, Sep 1995. 11

[Tur37] Alan Mathison Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathematical Society,
42(1):230–265, 1937. 26
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