
Short and Simple Cycle Separators in Planar Graphs

Eli Fox-Epstein∗ Shay Mozes † Phitchaya Mangpo Phothilimthana ‡

Christian Sommer §

Abstract

We provide an implementation of an algorithm that,
given a triangulated planar graph with m edges, returns
a simple cycle that is a 2/3–balanced separator consist-
ing of at most

√
8m edges. An efficient construction of a

short and balanced separator that forms a simple cycle
is essential in numerous planar graph algorithms, e.g.,
for computing shortest paths, minimum cuts, or max-
imum flows. To the best of our knowledge, this is the
first implementation of such a cycle separator algorithm
with a worst-case guarantee on the cycle length.

We evaluate the performance of our algorithm and
compare it to the planar separator algorithms recently
studied by Holzer et al. [ESA 2005, ACM Journal of Ex-
perimental Algorithms 2009]. Out of these algorithms,
only the Fundamental Cycle Separator (FCS) produces
a simple cycle separator. However, FCS does not pro-
vide a worst-case size guarantee. We demonstrate that
(i) our algorithm is competitive across all test cases in
terms of running time, balance and cycle length, (ii) it
provides worst-case guarantees on the cycle length, sig-
nificantly outperforming FCS on some instances, and
(iii) it scales to large graphs.

1 Introduction

Separators identify structure in a graph by cleaving
it into two balanced parts with little mutual interfer-
ence. A separator theorem typically provides worst-
case guarantees on the balance of the parts and on the
size of their shared boundary. Separators have been
studied extensively and separator theorems have been
found for planar graphs [37, 29, 10, 31, 16, 36, 12],
bounded-genus graphs [11, 17, 24], minor-free graphs
[3, 34, 35, 4, 23, 40], and others.

Efficient algorithms for these graph classes often ex-
ploit the fact that the input graph has small separa-
tors. For example, divide-and-conquer algorithms rely

∗Tufts University, ef@cs.tufts.edu
†MIT, shaym@mit.edu; part of this work was conducted while

SM was with Brown University.
‡MIT, mangpo@csail.mit.edu
§csom@csail.mit.edu

on decomposing a problem into subproblems with lit-
tle interference. More formally, a separator of a graph
G = (V,E) is a subset S ⊆ V that partitions V \ S
into two sets A,B ⊆ V of approximately equal size1

(say |A|, |B| ≤ 2|V |/3) and no edges between the two
parts (E ∩ A × B = ∅). A smaller set S often implies
faster algorithms providing solutions for various prob-
lems such as exact shortest paths [15, 19] or approxi-
mate vertex cover [30], and many more [18, 27, 13, 33,
6, 22, 32, 21, 28, 5]. For planar graphs, it is known
that |S| = O(

√
|V |) is possible, even for worst-case in-

stances [29].
Separators in planar graphs are based on fundamen-

tal cycles. For a spanning tree T , the fundamental cycle
Cuv induced by an edge uv /∈ T is the simple cycle
formed by uv and the u-to-v path in T . Every funda-
mental cycle C separates the graph into two parts: the
subgraph enclosed by C and the subgraph not enclosed
by C. An elementary argument shows that, if the graph
is triangulated, then there always exists an edge e /∈ T
such that Ce is a balanced separator in G. Namely,
each of the two parts consists of at most 2|V |/3 vertices.
A key observation is that, starting with a breadth-first
search tree, the size of any fundamental cycle is at most
one plus the diameter of the graph. Therefore, if the
diameter is small, the simple Fundamental Cycle Sepa-
rator Algorithm works well: arbitrarily select a root for
a breadth-first search, compute a BFS tree, and then
return the best fundamental cycle (best may be defined
in terms of balance, length, or both). However, if the
diameter is large, any balanced fundamental cycle may
be long, and, as a consequence, the separator may be
large as well.

In order to provide separators with small worst-
case sizes, most separator algorithms first reduce the
diameter of the input graph and then use the Funda-
mental Cycle Separator Algorithm as a subroutine. The
seminal Planar Separator Algorithm of Lipton and Tar-
jan [29] (henceforth referred to as Lipton-Tarjan) finds a
2/3–balanced separator by identifying two sets S1, S2 of

1More generally, one can define separators to be balanced

with respect to a weight function on the vertices, edges, and,
in embedded graphs, faces.

small size |S1| , |S2| = O(
√
|V |), whose removal yields

a subgraph with diameter O(
√
|V |) and large enough

weight. One can interpret the diameter reduction as
shortcutting a fundamental cycle using the vertices of S1

and S2.
For many planar graph algorithms such as those

computing shortest paths [27, 13, 33, 6, 32], minimum
cuts [21, 28], maximum flows [5], it is crucial that the
separator S forms a (simple) cycle in G. Unfortunately,
adding vertices of the sets S1, S2 to shortcut a funda-
mental cycle, as in the Lipton-Tarjan algorithm, results
in a separator that does not necessarily form a sim-
ple cycle. Neither the Lipton-Tarjan algorithm [29] nor
Djidjev’s algorithm [10] obtain simple cycles, and the
FCS algorithm does not provide any worst-case guaran-
tees on the cycle length.

The algorithms of Miller [31], Gazit and Miller [16],
and Djidjev and Venkatesan [12] offer both guarantees:
for any triangulated 2–connected planar graph, they can
compute a simple cycle separator of length O(

√
|V |) in

linear time. In this work, we focus on cycle separator
algorithms for planar graphs.

1.1 Related Experimental Work. There is a large
body of experimental work on graph partitioning,
mostly implementing various heuristics. In this work,
we shall focus on algorithms with worst-case guaran-
tees. Theoretical results on separators suggest that they
can be used to substantially speed up algorithms. Con-
sequently, Lipton-Tarjan separators and variants have
been implemented and evaluated experimentally [14, 2,
20].

Farrag [14] implemented an algorithm of Aleksan-
drov and Djidjev [1], where, instead of separating V into
two sets A,B, the number of pieces can be specified.
The separator algorithm is used for load balancing of
parallel algorithms: the input graph is partitioned into
k pieces, distributing the work evenly among k proces-
sors.

Aleksandrov, Djidjev, Guo, and Maheshwari [2] im-
plemented a three-phase algorithm, which (i) partitions
the graph by levels, (ii) partitions the graph by funda-
mental cycles, and (iii) combines the resulting compo-
nents into the right number of pieces (packing).

The most recent experimental work, and the one
most relevant to compare with our work is by Holzer,
Schulz, Wagner, Prasinos, and Zaroliagis [20], who im-
plemented the Lipton-Tarjan algorithm [29] and Djid-
jev’s algorithm [10], and provided an extensive exper-
imental evaluation. One of the main findings of their
study is that, across their battery of test graphs, the
FCS algorithm performs at least as well as their more
carefully engineered counterparts, despite the lack of

worst-case guarantees.
To the best of our knowledge, cycle separator

algorithms with worst-case guarantees on the cycle
length have not been implemented and evaluated yet.

1.2 Contributions. We provide an implementation
of a cycle separator algorithm with a worst-case guar-
anteed size of

√
8 |E|. This algorithm is a variant of

the one recently described in [26], and in Klein’s forth-
coming book [25]. We experimentally evaluate our algo-
rithm and compare it to the Fundamental Cycle Separa-
tor (FCS) Algorithm. As mentioned in Section 1.1, the
experimental results of Holzer et al. [20] suggest that
the FCS algorithm works well for most inputs. We con-
firm their findings. However, we also identify classes
of graphs for which the FCS algorithm returns arbi-
trarily long cycles.2 We demonstrate that (i) our algo-
rithm is competitive with respect to FCS for the graphs
in [20], (ii) it provides worst-case guarantees on the cy-
cle length, significantly outperforming FCS on some in-
stances, and (iii) it scales to large graphs.

We are hopeful that this implementation will pave
the way to implementing the many theoretically efficient
algorithms that rely on simple cycle separators in planar
graphs.

2 Preliminaries

For a tree T and an edge e ∈ T , let Te denote the subtree
of T rooted at the leafward endpoint of e. A breadth-
first search (BFS) yields a tree, which is the subgraph of
the input with the same vertices and exactly the edges
traversed in the search. One can seed a BFS with a
number of vertices or edges. To do this, imagine the
search started from a super-vertex connected to all of
the seeds. Doing so may yield a forest instead of a tree.

For a rooted tree T , and a set S of nodes of T , a
leafmost node in S is a node s of S with the property
that s does not lie on the root-to-s′ path in T for any
other node s′ ∈ S. Similarly, a node s is rootmost if
there is no other node s′ ∈ S that lies on the s-to-root
path in T .

For a spanning tree T of G and an edge e of G not
in T , the fundamental cycle of e with respect to T in G
is the simple cycle consisting of e and the unique simple
path in T between the endpoints of e.

We provide a brief review of basic definitions and
facts related to planar graphs, combinatorial embed-
dings and planar duality. For elaboration, see also [25].

2In the hard instances for FCS, the length of the cycle heavily
depends on the choice of the root of the BFS tree. For some roots,

the fundamental cycles are short, while for other roots the cycles
are very long.

2.1 Embeddings and Planar Graphs. Let E be
a finite set, the edge-set. We define the corresponding
set of darts to be E × {±1}. For e ∈ E, the darts
of e are (e,+1) and (e,−1). We think of the darts of e
as oriented versions of e (one for each orientation). We
define the involution rev(·) by rev((e, i)) = (e,−i). That
is, rev(d) is the dart with the same edge but the opposite
orientation.

A graph on E is defined to be a pair (V,E) where
V is a partition of the darts. Thus each element of V
is a nonempty subset of darts. We refer to the elements
of V as vertices. The endpoints of an edge e are the
subsets v, v′ ∈ V containing the darts of e. The head of
a dart d is the subset v ∈ V containing d, and its tail is
the head of rev(d).

An embedding of (V,E) is a permutation π of the
darts such that V is the set of orbits of π. For
each orbit v, the restriction of π to that orbit is a
permutation cycle. The permutation cycle for v specifies
how the darts with head v are arranged around v in the
embedding (in, say, counterclockwise order). We refer
to the pair (π,E) as an embedded graph.

Let π∗ denote the permutation rev ◦ π, where ◦
denotes functional composition. Then (π∗, E) is another
embedded graph, the dual of (π,E). (In this context,
we refer to (π,E) as the primal.)

The faces of (π,E) are defined to be the vertices
of (π∗, E). Since rev◦ (rev◦π) = π, the dual of the dual
of (π,E) is (π,E). Therefore the faces of (π∗, E) are
the vertices of (π,E). Throughout the paper we denote
the primal graph by G and its dual by G∗.

We define an embedded graph (π,E) to be planar
if n −m + φ = 2κ, where n is the number of vertices,
m is the number of edges, φ is the number of faces,
and κ is the number of connected components. Since
taking the dual swaps vertices and faces and preserves
the number of connected components, the dual of a
planar embedded graph is also planar.

Note that, according to our notation, we can use e
to refer to an edge in the primal or the dual.

Combinatorial embeddings are useful in practice
as well. In our implementation, embedded planar
graphs are represented as permutations on their darts.
Darts and vertices are represented by integer values.
Graphs are efficiently traversed by retaining lookup
tables allowing one to walk around permutations and
find incident darts and vertices. In our implementation,
each graph takes 4|E|+ |V |+ |F | integers for the primal
and dual representations, which is sufficiently compact
as to accommodate graphs with millions of vertices with
commodity hardware.

To provide more intuition we use geometric embed-
dings of planar graphs in the figures in this paper. Both

the primal and the dual graphs are embedded on the
same plane, so their edges are in one-to-one correspon-
dence. The edges of the dual graph in the figures are
rotated by roughly 90 degrees clockwise with respect to
their primal counterparts.

We focus on undirected embedded planar graphs
with no self-loops or parallel edges. For a graph G, we
use V (G), E(G), F (G) to denote the vertices, edges, and
faces of G, respectively.

We use the following properties of planar graphs:

Fact 2.1. (Simple-cycle/simple-cut duality [39])
A set of edges forms a simple cycle in a planar embedded
graph G iff it forms a simple cut in the dual G∗.

Since a simple cut in a graph uniquely determines
a bipartition of the vertices of the graph, a simple cycle
in a planar embedded graph G uniquely determines a
bipartition of the faces.

Definition 1. (Encloses) Let C be a simple cycle in
a connected planar embedded graph G. Then the edges
of C form a simple cut δG∗(S) for some set S of vertices
of G∗, i.e. faces of G. Thus C uniquely determines a
bipartition {F0, F1} of the faces of G. Let f∞, f be faces
of G. We say C encloses f with respect to f∞ if exactly
one of f, f∞ is in S. For a vertex/edge x, we say C
encloses x (with respect to f∞) if it encloses some face
incident to x (encloses strictly if in addition x is not
part of C).

Fact 2.2. ([38]) For any spanning tree T of G, the set
of edges of G not in T form a spanning tree of G∗.

For a spanning tree T ofG, we typically use T ∗ to denote
the spanning tree of G∗ consisting of the edges not in T .

2.2 Cycle Separators in Planar Graphs. We de-
fine an α–balanced separator to be a tripartition of the
vertices of the graph into (A,B, S) that is

separated: there are no edges from any node in A to
any node in B

balanced: |A| and |B| are each at most α |V (G)|

small: |S| ≤ f(|E(G)|) for some f

Typically, as well as throughout this paper, f(m) =
O(
√
m) and α = 2/3.
Let G be a triangulated biconnected simple planar

graph. Any simple cycle C in G separates G into the
interior of C (the subgraph enclosed by C) and the
exterior of C (the subgraph not strictly enclosed by C),
such that there are no edges between vertices strictly
enclosed by C and vertices not enclosed by C. We

1

1 1

1

Figure 1: A triangulated graph with unit face weights
and a spanning tree (solid edges) for which no funda-
mental cycle is 2/3–balanced. In this example all funda-
mental cycles are 3/4–balanced. In fact, this exempli-
fies the worst case. That is, a balance of 3/4 is always
achievable, provided no single face accounts for more
than 3/4 the total weight.

call a simple cycle C a small balanced cycle separator
in G if the separator defined by the interior of C,
the exterior of C, and C itself is 2/3–balanced and
|C| = O(f(|E(G)|)) for some f .

We note that balance can be defined in more general
terms than number of vertices. Let w be a function
assigning real weights to vertices, edges, and faces of G.
A cycle separator C is balanced with respect to the
weight function w if the total weight of vertices, edges,
and faces strictly enclosed (respectively, not enclosed)
by C is at most 2/3 the total weight of G. General
weights can be handled by considering just face weights:
arbitrarily assign the weight of any vertex or edge to
an incident face. Any cycle separator that is balanced
with respect to the new weight assignment is necessarily
balanced with respect to the original one. Therefore,
without loss of generality, we only refer to face weights
in this paper.

For triangulated planar graphs with general face
weights there may not exist a 2/3–balanced fundamental
cycle separator, even if the weight of any single face
is at most 2/3 the total weight. This is illustrated in
Figure 1. It is not difficult to see that one can always
achieve a balance of 3/4. However, if the weight of each
face is negligible with respect to the total weight (as is
the case when separating according to just the number
of vertices in a graph with many vertices), this is not
a problem and a balance of almost 2/3 is achievable.
For the sake of generality, we use a balance of 3/4 in
our proofs. Experimentally, since the balance criterion
we use is the number of vertices, we always observe a
balance of at most 2/3.

If the input graph is not triangulated, one can
always add edges to triangulate it. In this case the
cycle separator does not necessarily form a cycle in the
input graph. However, topologically, the separator does
form a cycle. For some applications such a topological
separation suffices, while in others it is possible to retain
the additional edges without affecting the application.

3 The Cycle Separator Algorithm

In this section we describe our simple cycle separator
algorithm. It roughly follows the overall structure of
Miller’s algorithm [31], but is significantly different. The
algorithm is similar to the one suggested recently in [26],
also described in Klein’s forthcoming book [25].

3.1 Levels and Level Components. We define
levels with respect to an arbitrarily chosen face f∞,
which we designate as the infinite face.

Definition 2. The level `F (f) of a face f is the min-
imum number of edges on a f∞–to–f–path in the dual
G∗ of G. We use LF

i to denote the faces having level i,
and we use LF

>i denote the set of faces f having level at
least i.

Definition 3. For an integer i ≥ 0, a connected
component of the subgraph of G∗ induced by LF

>i is called
a level-i component, or, if we do not want to specify i, a
level component. We use K>i to denote the set of level-
i components. A level-i component K is said to have
level i, and we denote its level by `K(K). A nonroot
level component is a level component whose level is not
zero. The set of vertices of G∗ (faces of G) belonging to
K is denoted F (K).

Note that we use K (not K∗) to denote a level com-
ponent even though it is a connected component of a
subgraph of the planar dual.

Fact 3.1. For any nonroot level component, the sub-
graph of G∗ consisting of faces not in F (K) is con-
nected.

Corollary 3.1. For any nonroot level component K,
the edges crossing the cut (F (K), G∗ \ F (K)) (i.e., the
set of edges in G∗ with exactly one endpoint in F (K))
form a simple cycle in the primal G.

In view of Corollary 3.1, for any nonroot level
component K, we use X(K) to denote the simple cycle
in the primal G consisting of the edges of the cut
(F (K), G∗ \F (K)). We refer to X(K) as the level cycle
bounding K.

(a) A triangulated graph (blue vertices and edges)
along with a dual BFS tree (in red, faces at different

BFS levels are indicated by different shapes). The

(primal) components K>k are indicated as shaded
subgraphs. The deeper the level of a component, the

darker its shade is.

(b) The corresponding
component tree K. Each

node of the component

tree corresponds to a
connected component

of G∗.

Figure 2: Illustration of the component tree K.

Definition 4. The component tree K is the rooted tree
whose nodes are the level components, and in which K
is an ancestor of K ′ if the faces of K include the faces
of K ′.

The root of the component tree is the unique level-0
component consisting of all of G∗. Figure 2 illustrates
the definition of the component tree.

Definition 5. An edge ff ′ of G∗ has level i if f has
level i and f ′ has level i+ 1. We write `E(ff ′) for the
level of ff ′. We use LE

i to denote the set of edges of
level i.

Note that not every edge of G∗ has a level.

3.2 Description of the Algorithm. Pseudocode of
the algorithm is given as Algorithm 1. An overview of
our algorithm is as follows. Let W be the sum of the
weights of all the faces.

The algorithm starts by computing the component
tree K. Next, the algorithm finds a small range of levels,
where a short balanced cycle separator is guaranteed to
exist (see appendix). This is done by identifying the
leafmost component K ′ whose weight is at least half
the total weight. Let i0 denote the level of K ′. The

algorithm finds two levels, i− and i+, each with few (at
most

√
m/2) edges, that bracket i0 (lines 5, 7). There

is a single component K0 at level i− that contains K ′.
We denote the level-i+ components contained in K0 by
K1,K2, Let H be the subgraph of G induced by the
faces in K0 \

⋃
j≥1Kj . The edges of H at level i− are

on a single face of H. This is the bounding cycle X(K0)
of the component K0 at level i− that contains K ′.
Similarly, the edges of H at level i+ are on a set of faces
that correspond to the bounding cycles {X(Kj)}j≥1 of
the components {Kj}j≥1. If any X(Ki) happens to be
a good separator, it is returned (line 9).

Otherwise, roughly speaking, the algorithm finds
a balanced fundamental cycle in K0 and shortcuts it
along one of the cycles X(Kj). Care must be taken to
ensure that the resulting cycle is simple. This is ensured
by an appropriate choice of spanning tree, and by
appropriately defining how to shortcut the fundamental
cycle along X(Kj).

More precisely, the algorithm initializes a forest F
with all the edges of X(K0) except an arbitrary one.
It iteratively adds to F edges of the cycles X(Kj)
(j ≥ 1) that do not introduce cycles (line 13). In
line 14 it further extends F into a spanning tree T of G
by performing a breadth-first search starting from the

Algorithm 1: Cycle Separator Algorithm

1 triangulate G and choose f∞ arbitrarily
2 construct the component tree K
3 let K ′ be the maximum-level component with weight at least W/2
4 let i0 be the level of K ′

5 let i− be the maximum level not exceeding i0 such that |LE
i−
| ≤

√
m/2

6 let K0 be the component at level i− that contains K ′

7 let i+ be the minimum level no less than i0 such that |LE
i+
| ≤

√
m/2

8 let K1,K2, . . . be the components at level i+ contained in K0

9 if W/4 ≤ w(Kj) ≤ 3W/4 for any j ≥ 0 then return X(Kj)
10 initialize a forest F with all the edges of X(K0) except for an arbitrary one
11 foreach cycle X(Kj) (j ≥ 1) do
12 foreach edge e of X(Kj) do
13 add e to F if it does not introduce a cycle in F

14 extend F into a spanning tree T of G by a breadth-first search, starting from the component of F that
contains the edges of X(K0)

15 let T ∗ be the spanning tree of G∗ rooted at f∞ that consists of edges not in T
16 let e∗ be a most balanced edge separator of T ∗

17 if e ∈ K0 \
⋃

j>0Kj then return the fundamental cycle of e w.r.t. T

18 let j > 0 be such that e ∈ Kj

19 let H be the subgraph of G induced by the faces in K0 \
⋃

l>0Kl

20 let H ′ denote the set of faces in T ∗e that belong to H
21 let C be the boundary of H ′

22 let C1, C2, . . . , C` be a decomposition of C into simple cycles
23 let Hk denote the set of faces enclosed by Ck (for 1 ≤ k ≤ `)
24 if w(Hk) ≥W/4 for some 1 ≤ k ≤ ` then return Ck

25 else

26 let r be such that W/4 ≤ w
(
Kj ∪

⋃
1≤k≤rHk

)
≤ 3W/4

27 return the boundary of Kj ∪
⋃

1≤k≤rHk

component of F that contains the edges of X(K0). By
this we mean that the BFS is seeded with the component
T of F that contains the edges of X(K0). Whenever a
vertex in a component T ′ of F is first visited by the
search, T ′ is added to T , and all the vertices of T ′

are marked as visited. This three-step construction of
the spanning tree T is important for ensuring that the
cycle returned by the procedure is a simple cycle (see
appendix).

The algorithm next computes a spanning tree T ∗

of G∗, consisting of the edges not in T . It finds a
most balanced edge separator e∗ in T ∗. If e ∈ H,
then the fundamental cycle of e w.r.t. T is returned
(line 17). Otherwise, e∗ ∈ Kj for some j ≥ 1 (e∗ /∈ K0

since, by construction, such fundamental cycles are not
balanced). Let T ∗e denote the subtree of T ∗ rooted at e∗.
Note that the vertices of T ∗e are exactly the set of faces
enclosed by the fundamental cycle of e w.r.t. T . Let H ′

be the set of faces in T ∗e∗ that do not belong to Kj .
Let C be the bounding cycle of H ′. C decomposes

into one or more more simple cycles C1, C2, . . . , C`. If
any Ck is a balanced separator, it is returned (Line 24).
Otherwise, there must be a prefix of the Ck’s whose
interior, together with the faces of component Kj is a
set of faces whose boundary is a balanced simple cycle
separator.

We prove in the appendix that Algorithm 1 always
returns a 3/4–balanced simple cycle separator with at
most

√
8m edges. As discussed in Section 2, if the

weight is defined as the number of vertices then 3/4
can be replaced with 2/3 throughout the paper.

4 Experiments

In this section we evaluate the performance of our al-
gorithm and compare it to prior results. One of the
striking findings in the experiments of Holzer et al. [20]
is that the Fundamental Cycle Separator algorithm is
usually very effective in finding small, balanced cycle
separators. Our goal in this paper is to establish that

our algorithm, which does provide a worst-case guaran-
tee on both separator size and balance, is competitive
with FCS both in terms of runtime and in average-case
cycle size and balance. We do not directly compare our
results with the other algorithms presented in [2, 20],
primarily because they do not produce simple cycle sep-
arators, but also because FCS’s performance was shown
to be dominant in most cases.

The FCS algorithm [20] operates as follows: first,
it computes a primal BFS tree T spanning the graph.
Recall that the edges not in T form a spanning tree T ∗

of the dual graph. Each primal edge e = uv not in T
defines a fundamental cycle, the one formed by e and
the unique path from u to v in T . Working from leafs
of T ∗ towards its root, we can efficiently compute the
weight enclosed by each fundamental cycle of T . The
algorithm returns one of these cycles that is a balanced
separator.

There is a trade-off between balance and cycle
length. If one prefers short cycles, it makes sense to
return the shortest cycle amongst those that are at
least 2/3–balanced. On the other hand, one cannot
necessarily return the most balanced cycle of length
O(
√
m), as FCS has no such cycle size guarantee. In this

case, for both FCS and our algorithm, we return the first
balanced separator found. Experimenting with different
choices produced results not significantly different from
those reported here.

We used two variants of our algorithm and two
variants of FCS in order to illustrate various issues that
arise in our experiments. Recall that our algorithm
may return a level cycle (line 9 in Algorithm 1), a
fundamental cycle (line 17), or a fundamental-and-level-
cycle merger (lines 24, 27). The first variant of our
algorithm implements the algorithm as presented in
Section 3. In particular, it terminates as soon as it
encounters a cycle that is a 2/3–balanced separator. We
refer to this variant as unoptimized. The second variant,
which we refer to as optimized for balance, computes
all candidate separators and returns the most balanced
candidate found.

Similarly, the first variant of FCS is the one that
terminates as soon as it encounters a cycle that is a
2/3–balanced separator. We refer to this variant as
unoptimized. The second variant, which we refer to as
optimized for length, returns the shortest fundamental
cycle among all those that are 2/3–balanced.

4.1 Data Sets and Experimental Setup. To ef-
fectively compare our algorithms, we draw extensively
from the graphs tested experimentally in [2, 20]. Each
graph is triangulated before testing. Note that there
is some degree of freedom in triangulation (Holzer

et al. [20] use the triangulation routines provided by
LEDA). As our graphs are represented by permutations
of the darts (see [25] for more on representing embed-
dings), we simply triangulate by walking through the
permutation describing the faces, and if any orbit is
larger than three, we insert an edge to produce a trian-
gle and reduce the size of the orbit by one.

Below is a list of the classes of graphs.

1. grid are square grid graphs; rect are rectangular
grid graphs. c-grid are two such graphs connected
via 5 joining vertices that form a perfectly balanced
cycle separator.

2. sixgrid graphs are tessellated hexagons.

3. A k-iteration tri graph starts with a triangle, and
on each of k iterations, each face except f∞ has a
new vertex embedded within it and connected to
each vertex on the face’s boundary.

4. globe graphs approximate spheres, and are imple-
mented by wrapping a rect into a cylinder and
adding a vertex on top and bottom connected to
the vertices of the top and bottom rows, respec-
tively. We call very skewed globes eggs.

5. cylinder graphs are similar to globe graphs, with
the addition of an extra vertex in every square.
BFS trees produced for cylinder and (triangu-
lated) globe graphs differ substantially.

6. A diameter-k is essentially a narrow, length-k
strip, triangulated in a way that maintains a diam-
eter of k and a very small separator (cf. Figure 7
in [20]).

7. The airfoil graph is a finite-element mesh of real-
world data [9].

8. The graph col is the USA-COL road network used
in the 9th DIMACS Implementation Challenge
— Shortest Paths [8], accessible online [7]. We
repeatedly removed vertices of degree at most 1.
Then, we interpreted the graph and the coordinates
as a straight-line embedding and we added vertices
whenever two edges intersect geometrically.

All tests are run on a machine with two Intel Xeon
X5650 processors and 47.3 gigabytes of RAM. The code
is compiled using GCC 4.4.5 targeting x86 64. The
operating system is Debian. Runtime tests were run
single-threaded on an otherwise-idle machine. Time is
measured in CPU clock ticks, using the clock function
in C. Instances were sufficiently large that the clock
granularity is negligible.

 0

 0.5

 1

 1.5

 2

 2.5

 3

grid rect globe egg cylinder hex c-grid diameter

C
P

U
 T

ic
ks

 (
1e

6)

Graph Type

Figure 3: Running time (in CPU clocks) for our algorithm, both optimized for balance (blue) and unoptimized
(teal); and for FCS, optimized for length (red) and unoptimized (orange).

4.2 Results and Interpretation. Following Holzer
et al. [20], we use whisker plots (Figures 5, 7(a), and
7(b)) to show the runtimes for, and the balance and
separator size produced by our algorithm and FCS for
various types of graphs. For each graph, we tried a
large sample of possible faces as roots of the component
trees for our algorithm, and possible vertices as roots
of the primal BFS trees for FCS. The box in each plot
corresponds to the middle 50% of values obtained for
all choices of root vertices; the whiskers span the entire
range of values observed. The ‘X’ mark in each plot
indicates the mean of observed values.

4.2.1 Running Time. Figure 3 shows running times
of the two variants of our algorithm and the two variants
of FCS on various graphs, all with roughly 1,000,000
vertices. Specifically, we test on a 1000 by 1000 grid,
100 by 10000 rect, 1000 by 1000 globe, 100 by 10000
egg, 10000 by 50 cylinder, 700 square hex, 707 by 707
c-grid, and a diameter-333333 graph.

It is evident that our algorithm is typically slower
than FCS, but only by a factor of at most two. This is to
be expected since both our algorithm and FCS compute
a BFS tree and find a fundamental cycle separator, but
our algorithm also performs a dual BFS to compute the
component tree and level cycles.

We note that for the egg, cylinder, and diameter

graphs, as well as occasionally, for grid, globe, and

hex, the unoptimized variant of our algorithm is faster
than both variants of FCS. To explain this behavior,
we examined the type of separator returned by the
unoptimized variant of our algorithm. These are shown
in Figure 4 (left). Recall that the unoptimized variant
of our algorithm terminates as soon as it finds a 2/3–
balanced cycle. The graphs for which this variant is fast
are exactly those for which it typically returns a level
cycle as the separator. For these graphs, this variant
only computes the component tree and level cycles, but
does not perform a primal BFS nor the search for a
fundamental cycle separator. In graphs with skewed
aspect ratio, such as egg, and cylinder, dual BFS levels
are necessarily small, hence there exists a level cycle that
forms a short, balanced separator.

Interestingly, it is extremely rare that the unopti-
mized algorithm resorts to shortcutting a fundmental
cycle separator using cycle levels. This infrequent out-
come accounts for a disproportionate amount of the al-
gorithm’s complexity (conceptually, but not so much in
lines of code), but is required for providing the worst-
case guarantee. This implies that complementing the
FCS algorithm with computing level cycles (i.e., com-
puting a dual BFS) is in itself a useful and efficient
simple cycle separator heuristic.

Figure 4 (right) shows that the balance-optimized
variant of our algorithm does shortcut fundamental
cycles using level cycles for most starting faces of the

 0

 20

 40

 60

 80

 100

grid
rect

egg
globe

hex
c-grid

cylinder

diameter

P
er

ce
nt

ag
e

Graph Type

 0

 20

 40

 60

 80

 100

grid
rect

egg
globe

hex
c-grid

cylinder

diameter

P
er

ce
nt

ag
e

Graph Type

Figure 4: The type of separator returned by our algorithm – unoptimized (left) and optimized for balance (right)
on the graphs used in Figure 3. Teal corresponds to fundamental cycles (line 17 in Algorithm 1), dark blue to
level cycles (line 9), and purple to a fundamental-and-level cycle merger (lines 24–27).

egg graph and for some of the globe graphs. In those
instances, the time spent on shortcutting the FCS is a
little less than the time spent on finding the FCS.

Figure 5 shows the running time as a function of
the size of various square grids. As expected, both
FCS and our algorithm appear to scale linearly in the
number of vertices. The change in minimum running
time around 20 million vertices can be most likely
attributed to caching effects. Again, we see here that,
on average, our algorithm takes no more than twice
as long as FCS. The slopes of the lines of best-fit
(3.1 and 1.9 for our algorithm and FCS, respectively)
suggest that our algorithm tends to be 1.6 times slower
than FCS. As shown in Figure 7(b), one might have
to run FCS several times to locate a separator with
size and balance within the guarantees provided by our
algorithm. Therefore, we consider the runtime of our
algorithm to be competitive.

4.2.2 Separator Balance and Size. Figures 7(a)
and 7(b) show results for balance and size, respectively.
Each graph tested (except for colorado) has approxi-
mately 10,000 vertices and is triangulated. In particu-
lar, grid is 100 by 100, rect is 10 by 1000, egg is a
10 by 1000 globe, globe is 100 by 100, hex is 70 by 70,
c-grid is 71 by 71, tri is ten iterations, cylinder is
1000 by 5, and diameter has diameter 3333.

In Figure 7(a), we see that unoptimized FCS never
produces significantly more balanced separators than
our unoptimized algorithm. However, for the graphs
egg, cylinder, tri, and diameter, our algorithm pro-
duces nearly perfectly balanced separators every time,

whereas FCS tends to find separators that are 2/3–
balanced. Recall from Figure 4 and the discussion above
that, for these graphs, our algorithm typically returns
a level cycle as the separator. Since candidate level cy-
cles are searched for starting from the median–balanced
level (level i0 in Section 3), and since in these graphs,
BFS levels consist of few edges, the algorithm finds small
level cycles that are nearly perfectly balanced. We have
verified that optimizing both algorithms for balance (i.e.
taking the most balanced separator encountered) elimi-
nates those differences. Note, however, that optimizing
FCS for balance is not guaranteed to return a short sep-
arator. In fact, for cylinder graphs, this is often the
case.

Figure 7(b) shows that in most test cases, our
algorithm returns slightly longer separators than FCS,
but still well below the

√
8m guarantee. However,

for egg and cylinder graphs, FCS often produces
separators whose length is well above our guarantee.
Below, we focus on the classes of graphs for which FCS
performs poorly.

To understand the extent to which FCS performs
poorly on cylinder graphs, we compute the percentage
of viable starting vertices (for FCS) and faces (for our
algorithm) on a 1000 by 5 cylinder. Figure 6 is a
graph of the cumulative frequency diagram for separator
size. The results are shown for the unoptimized variant
of our algorithm, and for three variants of FCS: the
unoptimized and shortest–balanced versions previously
described, and a randomized version of the shortest–
balanced heuristic. To randomize FCS, at each level of
constructing the BFS tree, we shuffle the order in which

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45

C
P

U
 T

ic
ks

 (
1e

6)

Number of Vertices (1e6)

Figure 5: Runtime (in CPU clocks) versus number of
vertices for square grid graphs for our algorithm (red)
and FCS (blue).

vertices are processed. This heuristic is one of those
studied in [20].

Our algorithm reaches 100% well before the guar-
anteed

√
8m size bound, while all versions of FCS have

many poor choices of starting vertex. This implies that
one might need to try FCS several times before locat-
ing a viable separator. Note that, especially for the
shortest–balanced randomized version of FCS, the ex-
pected number of attempts is small (less than two).

5 Conclusions

In this paper we described an implementation of a sim-
ple cycle balanced separator algorithm for planar graphs
with proven worst-case guarantees on the separator’s
size. To the best of our knowledge, the only other al-
gorithm that has been implemented and guarantees a
simple cycle separator is the Fundamental Cycle Sepa-
rator Algorithm. However, unlike our algorithm, FCS
does not provide worst-case size guarantees.

Our experiments show that the running time of our
algorithm is comparable to that of FCS on all instances.
We demonstrate families of graphs for which our algo-
rithm finds extremely small separators, while FCS of-
ten finds separators that are much larger than even the
worst-case guarantee of our algorithm. However, when
FCS is optimized for returning a shortest balanced FCS,
and employs randomization in the construction of the
BFS tree, it finds a small separator with high probabil-
ity. Note that using heuristics diminishes the attractive-
ness of the FCS algorithm, which stems from its simplic-
ity, whereas our algorithm performs well without further
optimizations or heuristics. An interesting conjecture in
this context is that FCS works well with constant prob-

 0

 20

 40

 60

 80

 100

sqrt(8m) 1 10 100 1000

P
er

ce
nt

ag
e

Separator size

Figure 6: X-axis: separator size. Y-axis: percent-
age of starting vertices achieving a separator of at most
this size. Comparing our algorithm (teal), shortest–
balanced randomized FCS (red), shortest–balanced de-
terministic FCS (green), and unoptimized deterministic
FCS (dark blue).

ability on any input graph, where the probability is over
the choices of BFS trees (choice of root as well as choice
of order in which nodes are visited).

We further observe that our algorithm seldom re-
quires the somewhat complicated last phase, which com-
bines a long fundamental cycle with short level cycles
to produce a short separator. For almost all test in-
stances, our algorithm returns either a level cycle or a
fundamental cycle as the short separator. This implies
that complementing the FCS algorithm with comput-
ing level cycles (i.e., computing both the primal and
dual BFS) is in itself a useful and efficient simple cy-
cle separator algorithm (albeit without the theoretical
worst-case guarantee).

We conclude that our algorithm is a viable alterna-
tive to FCS that outperforms it in certain cases. We be-
lieve that optimizations such as those studied by Holzer
et al. would further enhance its performance.

An interesting direction for future work is imple-
menting the separator algorithm in [26], which is quite
similar to the algorithm discussed in the current pa-
per. An implementation of the algorithm in [26] can be
used to compute r–divisions in asymptotic linear time.
It would be interesting to see how well that algorithm
actually performs in practice.

Acknowledgements

This work originated from MIT course 6.889 on “Al-
gorithms for planar graphs and beyond.” The authors
would like to thank Erik Demaine and Philip Klein for

1/3

 0.35

 0.4

 0.45

 0.5

grid

rect

globe

egg

cylinder

hex

c-grid

diam
eter

tri colorado

S
ep

ar
at

or
 B

al
an

ce

Graph Type

(a) Separator balance (number of vertices in smaller part

divided by the total number of vertices) for our unoptimized
algorithm (red) with unoptimized FCS (green).

sqrt(8)

 0

 2

 4

 6

 8

 10

 12

grid

rect

globe

egg

cylinder

hex

c-grid

diam
eter

tri colorado

S
ep

ar
at

or
 S

iz
e

Graph Type

(b) Separator size divided by
√
m for our unoptimized algo-

rithm (red), unoptimized FCS (green), and shortest–balanced
FCS (blue).

Figure 7: Separator balance and size for various graphs

fruitful discussions. Additionally, we thank Philip Klein
and his team for providing us with their planar graph
library.

CS was partially supported by the Swiss National
Science Foundation. Work was conducted while CS was
at MIT. SM was partially supported by National Science
Foundation Grants CCF-0964037 and CCF-1111109.

References

[1] Lyudmil Aleksandrov and Hristo Nicolov Djidjev. Lin-
ear algorithms for partitioning embedded graphs of
bounded genus. SIAM Journal on Discrete Mathemat-
ics, 9(1):129–150, 1996.

[2] Lyudmil Aleksandrov, Hristo Nicolov Djidjev, Hua
Guo, and Anil Maheshwari. Partitioning planar graphs
with costs and weights. ACM Journal of Experimental
Algorithmics, 11, 2006. Announced at ALENEX 2002.

[3] Noga Alon, Paul D. Seymour, and Robin Thomas. A
separator theorem for nonplanar graphs. Journal of the
American Mathematical Society, 3(4):801–808, 1990.
Announced at STOC 1990.

[4] Punyashloka Biswal, James R. Lee, and Satish Rao.
Eigenvalue bounds, spectral partitioning, and metrical
deformations via flows. Journal of the ACM, 57(3),
2010. Announced at FOCS 2008.

[5] Glencora Borradaile, Philip N. Klein, Shay Mozes, Ya-
hav Nussbaum, and Christian Wulff-Nilsen. Multiple-
source multiple-sink maximum flow in directed planar
graphs in near-linear time. In 52nd IEEE Symposium
on Foundations of Computer Science (FOCS), pages
170–179, 2011.

[6] Sergio Cabello. Many distances in planar graphs.

Algorithmica, 62(1–2):361–381, 2012. Announced at
SODA 2006.

[7] Camil Demetrescu, Andrew Goldberg, and David
Johnson. 9th DIMACS Implementation Challenge
— Shortest Paths. http://www.dis.uniroma1.it/

challenge9/download.shtml; accessed 21 Oct 2012.
[8] Camil Demetrescu, Andrew V. Goldberg, and David S.

Johnson. Implementation challenge for shortest paths.
In Encyclopedia of Algorithms. 2008.

[9] Ralf Diekmann and Robert Preis, 1998.
http://www2.cs.uni-paderborn.de/fachbereich/AG/

monien/RESEARCH/PART/GRAPHS/FEM2.tar; accessed
21 Oct 2012.

[10] Hristo Nicolov Djidjev. On the problem of partition-
ing planar graphs. SIAM Journal on Algebraic and
Discrete Methods, 3:229–240, 1982.

[11] Hristo Nicolov Djidjev. A linear algorithm for par-
titioning graphs of fixed genus. Serdica. Bulgariacae
mathematicae publicationes, 11(4):369–387, 1985. An-
nounced in Comptes Rendus de l’Académie Bulgare des
Sciences, 34:643–645, 1981.

[12] Hristo Nicolov Djidjev and Shankar M. Venkatesan.
Reduced constants for simple cycle graph separation.
Acta Informatica, 34:231–243, 1997.

[13] Jittat Fakcharoenphol and Satish Rao. Planar graphs,
negative weight edges, shortest paths, and near linear
time. Journal of Computer and System Sciences,
72(5):868–889, 2006. Announced at FOCS 2001.

[14] Lamis M. Farrag. Applications of graph partitioning
algorithms to terrain visibility and shortest path prob-
lems. Master’s thesis, School of Computer Science,
Carleton University, 1998.

[15] Greg N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications. SIAM
Journal on Computing, 16(6):1004–1022, 1987.

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/GRAPHS/FEM2.tar
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/GRAPHS/FEM2.tar

[16] Hillel Gazit and Gary L. Miller. Planar separators
and the Euclidean norm. In SIGAL International
Symposium on Algorithms, pages 338–347, 1990.

[17] John R. Gilbert, Joan P. Hutchinson, and Robert En-
dre Tarjan. A separator theorem for graphs of bounded
genus. Journal of Algorithms, 5(3):391–407, 1984. An-
nounced as TR82-506 in 1982.

[18] Michael T. Goodrich. Planar separators and paral-
lel polygon triangulation. Journal of Computer and
System Sciences, 51(3):374–389, 1995. Announced at
STOC 1992.

[19] Monika Rauch Henzinger, Philip Nathan Klein, Satish
Rao, and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. Journal of Computer
and System Sciences, 55(1):3–23, 1997. Announced at
STOC 1994.

[20] Martin Holzer, Frank Schulz, Dorothea Wagner, Grig-
orios Prasinos, and Christos D. Zaroliagis. Engineering
planar separator algorithms. ACM Journal of Exper-
imental Algorithmics, 14, 2009. Announced at ESA
2005.

[21] Giuseppe F. Italiano, Yahav Nussbaum, Piotr
Sankowski, and Christian Wulff-Nilsen. Improved al-
gorithms for min cut and max flow in undirected planar
graphs. In 43rd ACM Symposium on Theory of Com-
puting (STOC), pages 313–322, 2011.

[22] Ken-ichi Kawarabayashi, Philip Nathan Klein, and
Christian Sommer. Linear-space approximate dis-
tance oracles for planar, bounded-genus, and minor-
free graphs. In 38th International Colloquium on Au-
tomata, Languages and Programming (ICALP), pages
135–146, 2011.

[23] Ken-ichi Kawarabayashi and Bruce A. Reed. A separa-
tor theorem in minor-closed classes. In 51st IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 153–162, 2010.

[24] Jonathan A. Kelner. Spectral partitioning, eigenvalue
bounds, and circle packings for graphs of bounded
genus. SIAM Journal on Computing, 35(4):882–902,
2006. Announced at STOC 2004.

[25] Philip N. Klein. Flatworlds: Optimization Algo-
rithms for Planar Graphs. Draft available online at
http://www.planarity.org.

[26] Philip N. Klein, Shay Mozes, and Christian Som-
mer. Structured recursive separator decompo-
sitions for planar graphs in linear time. 2012.
Manuscript, preprint available on the arXiv
http://arxiv.org/abs/1208.2223.

[27] Philip Nathan Klein and Sairam Subramanian. A
fully dynamic approximation scheme for shortest paths
in planar graphs. Algorithmica, 22(3):235–249, 1998.
Announced at WADS 1993.

[28] Jakub Lacki and Piotr Sankowski. Min-cuts and
shortest cycles in planar graphs in O(n log logn) time.
In 19th European Symposium on Algorithms (ESA),
pages 155–166, 2011.

[29] Richard J. Lipton and Robert Endre Tarjan. A
separator theorem for planar graphs. SIAM Journal

on Applied Mathematics, 36(2):177–189, 1979.
[30] Richard J. Lipton and Robert Endre Tarjan. Applica-

tions of a planar separator theorem. SIAM Journal on
Computing, 9(3):615–627, 1980. Announced at FOCS
1977.

[31] Gary L. Miller. Finding small simple cycle separators
for 2-connected planar graphs. Journal of Computer
and System Sciences, 32(3):265–279, 1986. Announced
at STOC 1984.

[32] Shay Mozes and Christian Sommer. Exact distance
oracles for planar graphs. In 23rd ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 209–222,
2012.

[33] Shay Mozes and Christian Wulff-Nilsen. Short-
est paths in planar graphs with real lengths in
O(n log2 n/ log log n) time. In 18th Annual European
Symposium on Algorithms (ESA), 2010.

[34] Serge A. Plotkin, Satish Rao, and Warren D. Smith.
Shallow excluded minors and improved graph decom-
positions. In 5th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 462–470, 1994.

[35] Bruce A. Reed and David R. Wood. A linear-time
algorithm to find a separator in a graph excluding a
minor. ACM Transactions on Algorithms, 5(4), 2009.
Announced at EuroComb 2005.

[36] Daniel A. Spielman and Shang-Hua Teng. Disk
packings and planar separators. In 12th Symposium
on Computational Geometry (SoCG), pages 349–358,
1996.

[37] Peter Ungar. A theorem on planar graphs. Journal
of the London Mathematical Society, s1-26(4):256–262,
1951.

[38] Karl Georg Christian von Staudt. Geometrie der Lage.
Bauer und Raspe, Nürnberg, 1847.

[39] Hassler Whitney. Non-separable and planar graphs.
Transactions of the American Mathematical Society,
34(2):339–362, 1932.

[40] Christian Wulff-Nilsen. Separator theorems for minor-
free and shallow minor-free graphs with applications.
In 52nd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 37–46, 2011.

http://www.planarity.org
http://arxiv.org/abs/1208.2223

A Correctness of Algorithm 1

A.1 Simple Cycle

Lemma A.1. For every Ki (i ≥ 0) there is a single edge
e∗ ∈ T ∗ whose rootward endpoint is not a face of Ki and
whose other endpoint is a face of Ki.

Proof. The claim is true for i = 0 since the root of T ∗

is f∞ and since exactly one edge of X(K0) is in T ∗. For
i ≥ 1, assume there is more than one edge where T ∗

enters Ki. Consider two such edges e∗1, e
∗
2. Consider the

embedding of H inherited from G. The unique path in
T ∗ between e∗1 and e∗2 partitions the embedding of H
into at least two regions such that the vertices of X(Ki)
are not all in a single region. Since T ∗ does not contain
any edges of the forest F , this contradicts the fact that
the vertices of X(Ki) are connected in F . �

For a given i ≥ 0, we say that T ∗ enters Ki at the
unique edge e of X(Ki) that belongs to T ∗. We use
the edge e at which T ∗ enters Ki to define an order on
the vertices of X(Ki). Namely, the order in which the
vertices of X(Ki) are encountered in a clockwise walk
along X(Ki), starting from e.

Lemma A.2. Fix j ≥ 1. Let x1, x2, . . . x` be the set
of vertices in X(K0) ∩X(Kj), in clockwise order along
X(K0), starting from the edge of X(K0) at which T ∗

enters K0. Then this is also the order in which these
vertices are visited in clockwise order along X(Kj),
starting from the edge of T ∗ at which T ∗ enters Kj.

Proof. The lemma is trivial for ` < 2. Assume,
therefore, that ` ≥ 2. T ∗ enters K0 between x` and x1.
Lemma A.1 implies that T ∗ enters Kj between x` and
x1 as well. Suppose that xi+1 does not follow xi in
the clockwise order of vertices along X(Kj). Then
either X(K0) does not enclose X(Kj), or X(K0) is not
a simple cycle – a contradiction.

We establish some properties of T and T ∗ that are
critical for our implementation. The first two lemmas
follow immediately from the definition of T .

Lemma A.3. Let u, v be vertices on X(K0). The
unique u-to-v path in T consists only of edges of X(K0).
�

Lemma A.4. Let u, v be vertices on X(Kj) for any fixed
j ≥ 0. The unique u-to-v path in T consists only of
edges in F . �

Lemma A.5. Let u, v be vertices on X(Ki) for any fixed
i ≥ 1. Any u-to-v path P that consists only of edges
of ∪j≥1X(Kj) uses only edges of X(Ki).

Proof. The proof is by contradiction. Assume P con-
tains some edge that does not belong to X(Ki). With-
out loss of generality, P contains no edges of X(Ki)
(otherwise choose such a subpath of P). Let C be a
simple cycle formed by a u-to-v subpath of X(Ki) and
by P . Observe that C consists of level i+ edges, so
all faces enclosed by C have level at least i+. How-
ever, since the X(Kj)’s are edge disjoint, C must en-
close some face that is not enclosed by any X(Kj), i.e.,
a face whose level is smaller than i+, a contradiction. �

e
u

v

T*

X(K0)
X(Kj)

C2

C1

u-

u+

Figure 8: Illustration of the interaction between
X(K0), X(Kj), and T used in the various lemmas in
this section. X(K0) is shown in blue. X(Kj) is black.
The fundamental cycle of e is green. Some (dual) edges
of T ∗ are shown in red.

Combining the above lemmas we get:

Lemma A.6. Let u, v be vertices on X(Ki) for some
fixed i ≥ 1. The unique u-to-v path P in T can be
decomposed into five (possibly empty) subpaths:

1. P1 consisting only of edges of X(Ki)

2. P2 that starts at a vertex of X(Ki), ends at a vertex
of X(K0) and is internally disjoint from vertices of
both X(K0) and X(Ki)

3. P3 that is a subpath of X(K0). If the first (last)
vertex on P3 belongs to X(Ki) then P2 (P4) is
empty.

4. P4 that starts at a vertex of X(K0), ends at a vertex
of X(Ki) and is internally disjoint from vertices of
both X(K0) and X(Ki)

5. P5 consisting only of edges of X(Ki)

Proof. Refer to Figure 8. Let P1, P5 be the maximal
prefix and suffix of P consisting only of edges of X(Ki).
Let P ′ denote the subpath of P between P1 and P5. If P ′

is non-empty, then it is a path between vertices ofX(Ki)
that includes some edge not in X(Ki). By Lemma A.5,
it cannot consist solely of edges in ∪j≥1X(Kj). By
Lemma A.4, P consists only of edges of F . Hence, P ′

must include some edge of X(K0). By Lemma A.3, all
vertices of X(K0) in P form a subpath of P that consists
only of edges of X(K0). Hence this is also a subpath
of P ′. Denote it by P3. The remaining two subpaths
of P ′, which we denote by P2 and P4, consist only of
edges not in X(K0). By Lemma A.4, P2 and P4 do
not contain any vertices of X(Ki), other than the first
vertex of P2 and the last vertex of P4. Hence, if the first
(last) vertex of P3 belongs to X(Ki), P2 (P4) must be
empty. �

Consider the case where e∗ ∈ Kj . Let C be the
fundamental (and thus simple) cycle of T w.r.t. e. Let Q
be the maximal subpath of C that contains e and has no
internal vertices that are vertices of X(Kj). Write C =
P ◦Q. Since P is a path in T between vertices that are
on X(Kj), it can be written as P = P1◦P2◦P3◦P4◦P5,
as specified in Lemma A.6. Let u, v be the endpoints
of P2 and P4, respectively, that belong to X(Kj), where
u appears before v in the order of vertices of X(Kj).

Lemma A.7. The unique path P ′ = P2 ◦ P3 ◦ P4 in T
between u and v visits no vertices of X(Kj) that appear
before u or after v in the order of vertices along X(Kj).

Proof. By Lemma A.6, since P2 and P4 are internally
vertex disjoint from X(Kj), it suffices to show that P3

visits no vertices of X(Kj) that appear before u or
after v in the order of vertices along X(Kj). If P3

contains no vertices of X(Kj), the lemma is trivially
true. Otherwise, X(K0) ∩X(Kj) is non empty.

Let u− (u+) be the vertex in X(K0) ∩X(Kj) that
weakly precedes (follows) u in the order of vertices
along X(Kj). Assume first, that such predecessor and
successor exist. Similarly, Let v− (v+) be the vertex in
X(K0) ∩ X(Kj) that precedes (follows) v in the order
of vertices along X(Kj). Let Q0

u be the unique u−-to-
u+ subpath of X(K0) that does not include the edge
at which T ∗ enters X(K0). Let Qj

u be the unique
u−-to-u+ subpath of X(Kj) that does not include the
edge at which T ∗ enters X(Kj). By planarity, P2 is
confined to the interior of the cycle formed by Q0

u and
Qj

u. Hence, the first vertex x of P3 must either be u (in
case u ∈ X(K0), or an internal vertex of Q0

u. A similar
argument shows that the last vertex y of P3 is either

v or an internal vertex of Q0
v (where Q0

v is the unique
v−-to-v+ subpath of X(K0) that does not include the
edge at which T ∗ enters X(K0)).

Since neither P2 nor P4 use edges of T ∗, and since
P ′ is simple, x must precede y in the order of vertices
of X(K0) (see Figure 8). Recall that P3 is the unique
x-to-y subpath of X(K0) that does not include the edge
at which T ∗ enters X(K0). Therefore the vertices in
P3 appear in increasing order of the vertices of X(K0).
This means that if P3 contains a vertex of X(Kj), the
first such vertex is u+, and the last such vertex is v−.
It follows, by Lemma A.2 that P3 only visits vertices
of X(Kj) that follow u and precede v in the order of
vertices along X(Kj).

The case where the predecessor u− or the succes-
sor u+ does not exist is handled in a similar manner.
Note that only one of these can happen simultaneously,
since we assume K(X0) ∩ X(Kj) 6= ∅. Also note that
this implies u /∈ X(K0) since otherwise u = u− = u+.
Suppose the predecessor does not exist (the other case
is symmetric). In this case we define u− to be the first
vertex of X(K0). As above, let Q0

u be the unique u−-
to-u+ subpath of X(K0) that does not include the edge
at which T ∗ enters X(K0). Note that u+ is the only
vertex of Q0

u that belongs to X(Kj). Since P2 does not
use any edges of T ∗, the first vertex x of P3 must be a
vertex of Q0

u. The remainder of the argument proceeds
as above. �

Let H be the subgraph of G induced by the faces
in K0 \ ∪i>0Ki. Let H ′ denote the set of faces in T ∗e
that belong to H. The boundary C of H ′ consists of the
path P ′ described in Lemma A.7, and of the subpath
Q of X(Kj) between u and v that does not contain
the edge of T ∗ that enters Kj . Lemma A.7 shows
that even though C might not be a simple cycle, the
non-simplicities arise in a structured, monotonic way.
Specifically, the vertices of P ′ that belong to X(Kj) are
all vertices ofQ and appear in the same order along both
P ′ and Q. Put in other words, and using the notation
{Ci}, {Hi} as defined in the algorithm (lines 21–23), we
have the following lemma.

Lemma A.8. The cycle returned by the algorithm is
simple.

Proof. The cycle returned in Lines 9 is simple since
component boundaries are simple cycles. The cycle
returned in Line 17 is simple since it is a fundamental
cycle. The cycle returned in Line 24 is simple by
definition of the Ck’s. It remains to show that the
boundary of Kj∪

⋃
kHk is a simple cycle. The boundary

of Kj ∪
⋃

kHk consists of a prefix of P ′ and of Q̄, the
path consisting of a suffix ofQ and of the edges ofX(Kj)

that do not belong to Q The lemma follows since, by the
argument preceding this lemma, P ′ and Q̄ are vertex
disjoint, and since both are simple paths with the same
endpoints. �

We have shown that the cycle returned by the
algorithm is simple. We next argue that this simple
cycle is a short balanced separator.

A.2 Balance and Cycle Length

Lemma A.9. The simple cycle returned by the algo-
rithm is 3/4–balanced

Proof. Clearly, the cycles returned in Lines 9, 17, or 24
are balanced separators. It only remains to argue that
if Line 26 is reached, then there exists an r such that
Kj ∪

⋃
1≤k≤rHk is 3/4–balanced. By construction of T ,

the fundamental cycle of e w.r.t. T is enclosed by
X(K0). Since this fundamental cycle is a balanced
separator (albeit not a short one), this implies that

w
(
Kj ∪

⋃
1≤k≤`Hk

)
≥ W/4. Since the conditions in

line 9 and 24 are both false, w(Kj) < W/4 and the
weight enclosed by any individual Ck is at most W/4.
Hence, an appropriate r must exist. �

Lemma A.10. The forest F consists of at most
√

2m
edges.

Proof. By choice of the levels i− and i+, each level
consists of at most

√
m/2 edges. Since F consists of

at most all edges of these two levels, it consists of at
most

√
2m edges. �

Lemma A.11. Let u be a vertex in H. The root-to-u
path in T consists of at most

√
m/2 edges that do not

belong to F .

Proof. Let f be a face to which u is incident. The level
of f is between i− and i+. By definition of levels of
faces, there exists a face f ′ that is incident to X(K0)
and whose distance in the dual of H from f is at most
(i+− i−). Since each face is a triangle, this implies that
there exists a path in H from u to some vertex of X(K0)
whose length is at most (i+−i−)/2. Since T is obtained
from F by breadth-first search, the root-to-u path in T
consists of at most (i+ − i−)/2 edges not in F .

It remains to bound i+ − i−. Since the cycles
bounding different components are edge disjoint, and
since every level between i− and i+ consists of at least√
m/2 edges, (i+− i−)∗ (

√
m/2) < m. This shows that

i+− i− <
√

2m. Hence, the root-to-u path in T consists
of at most

√
m/2 edges that are not in F . �

Theorem A.1. The algorithm returns a 3/4–balanced
simple cycle separator with at most

√
8m edges.

Proof. Lemma A.8 shows that the cycle returned by
the algorithm is simple. Lemma A.9 shows that it is
a 3/4–balanced separator. It remains to bound the
length of the cycle. The cycle returned in Line 9
consist of at most

√
m/2 edges. The fundamental cycle

returned in Line 17 consists of two paths of T between
the endpoints of e and vertices on X(K0) and from a
subpath of X(K0). The length of each of the former two
paths is bounded by Lemma A.11 by

√
m/2. By choice

of i−, the length of X(K0) is at most
√
m/2. Hence,

the length of the cycle returned in Line 17 is at most
3
√
m/2 <

√
8m.

The cycle returned in Line 27 consists of edges
of X(Kj), edges of X(K0) and two paths in T between
vertices of X(Kj) and vertices of X(K0). By choice
of i− and i+, the length of X(K0) and the length
of X(Kj) are both bounded by

√
m/2. Note that

the edges of X(K0) and X(Kj) belong to F . By
Lemma A.11, each of the paths of T consists of at
most

√
m/2 edges not in F . Hence the boundary

of Kj ∪
⋃

1≤k≤rHk consists of at most 4
√
m/2 =

√
8m

edges. �

	Introduction
	Related Experimental Work.
	Contributions.
	Preliminaries
	Embeddings and Planar Graphs.
	Cycle Separators in Planar Graphs.

	The Cycle Separator Algorithm
	Levels and Level Components.
	Description of the Algorithm.

	Experiments
	Data Sets and Experimental Setup.
	Results and Interpretation.
	Running Time.
	Separator Balance and Size.

	Conclusions
	Correctness of Algorithm 1
	Simple Cycle
	Balance and Cycle Length

