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MotivationMotivationMotivationMotivationMotivationMotivation

Efficiently find a Shortest Path between Pairs of Nodes in

D Transportation Networks

D Social Networks

D Computer Networks (Internet)

D Protein Interaction Networks

D ...



Shortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance Oracles

D Preprocess a graph G with n nodes and m edges ...

D ... to create a Data Structure, using which ...

D ... we can efficiently answer Distance Queries.

D d(u, v)



Shortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance Oracles

D Preprocess a graph G with n nodes and m edges ...

D ... to create a Data Structure, using which ...

D ... we can efficiently answer Approximate Distance Queries.

D d̃(u, v)



Approximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — Stretch

D Distance between u and v in graph G : dG (u, v)

D Oracle Result d̃(u, v) satisfies

dG (u, v) 6 d̃(u, v) 6 α · dG (u, v) + β.

D Stretch (α, β)

D Multiplicative Stretch α
D Additive Stretch β
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Shortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation Networks

D Main focus, large body of research since 60’s/70’s

D Big progress around 2006 (DIMACS Implementation
Challenge)

D Preprocessing: tens of minutes for road map of the US/EU
D Query time: ≈ 106 times faster than Dijkstra’s algorithm

D Ideas

D Geometry, coordinates, A* search [SV86]
D Goal-directed search (A* for graphs) [GH05]
D Hierarchical structures [SS05, BFSS07, BD08, BDS+08]

D Heuristics that work very well for road networks (often need
separators)



Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs — unweighted if not stated
otherwise

D Restricted classes (planar, bounded tree-width,
minor-closed,...)



On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]
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Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis
 (Almost) Optimal Space/Stretch Tradeoff
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Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
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Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]
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Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs

D Restricted graph classes (planar, bounded tree-width,
minor-closed,...)



On Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of Graphs

D Bounded Tree-width [CZ00]
Space O(n), Exact

D Planar [Tho04, Kle02] & Minor-free [AG06] & Bounded
Doubling Dimension [Tal04]
Space Õ(n), Stretch (1 + ε, 0)
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Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis



On Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of Graphs

D Bounded Tree-width [CZ00]
Space O(n), Exact

D Planar [Tho04, Kle02] & Minor-free [AG06] & Bounded
Doubling Dimension [Tal04]
Space Õ(n), Stretch (1 + ε, 0)

D All Sparse Graphs?



Space Lower BoundSpace Lower BoundSpace Lower BoundSpace Lower BoundSpace Lower BoundSpace Lower Bound

Theorem
D For sufficiently large graphs (n > n∗ nodes),

D any (α, 0)–approximate distance oracle

D with query time at least t

D requires space

S > n1+Ω( 1
αt )/ lg n.



Comparison with Related WorkComparison with Related WorkComparison with Related WorkComparison with Related WorkComparison with Related WorkComparison with Related Work

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis



Comparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” Graphs

D “hard” graphs in Thorup and Zwick’s lower bound have
average degree Θ

(
n2/α

)
 very dense

TZ actually prove space Ω(m)

D This proof: regular graphs with degree

Θ

((
8twα
lg n

)2/C
)
6 polylog(n)

D query time t
D word length w
D (multiplicative) stretch α
D constant C ∈ [0, 1]

proves space ω(m)

D Distance oracles for sparse graphs also require large space:
Before: Ω(n · polylog(n))
Now: Ω

(
n1+ε

)



Proof IdeaProof IdeaProof IdeaProof IdeaProof IdeaProof Idea

D Reduction from Distance Oracle to a Communication Protocol

D This Protocol efficiently solves the
LopsidedSetDisjointness Problem
from Communication Complexity

D But: There is a Communication Lower Bound for the
LopsidedSetDisjointness Problem

D  Space Lower Bound for the Distance Oracle



LopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointness

Alice Bob

SAlice ⊆ U U SBob ⊆ U

−→
←−
−→
←−

SAlice ∩ SBob
?
= ∅



Data Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication Protocol

Alice Bob

SAlice ⊆ U U SBob ⊆ U
f (SAlice) f : U ↔ E f (SBob)

Query ↑ Data Structure ↑
t rounds size S

lgS−→ word length w
w←−
−→
←−

SAlice ∩ SBob
?
= ∅

[PT06, Pat08]



“Hard” Graphs“Hard” Graphs“Hard” Graphs“Hard” Graphs“Hard” Graphs“Hard” Graphs

Expander Graphs [LPS88]

D n nodes, degree Θ

((
8twα
lg n

)2/C
)
6 polylog(n)

D girth O(lg n) (girth: length of shortest cycle)

D many disjoint paths (≈ α times shorter than the girth)

D Distance oracle for sparse graphs must be able to handle
expander graphs and all their subgraphs

D (α, 0)–approximate distance oracle must handle distance
queries in time t

D (in particular for the endpoints of these paths ↑)



Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

G = (V ,E )
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Alice Bob

f (SAlice)
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Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice) f (SBob)

t rounds size S

lgS−→ word length w

w←−

SAlice ∩ SBob
?
= ∅



Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice) G ′ = (V ,E \ f (SBob))

t rounds Oracle for G ′, size S
lgS−→ word length w
w←−

SAlice ∩ SBob
?
= ∅



Path Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” paths

D query d̃G ′(u, v) for a shortest path from u to v in G
(path not “too long”)
 decide whether the path is contained in G ′

u v`

> α`

> α`

D d̃G ′(u, v) 6 α`  all edges of the path are in E (G ′)

D d̃G ′(u, v) > α` otherwise (since the girth is large)



Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice) G ′ = (V ,E \ f (SBob))

t rounds Oracle for G ′, size S
lgS−→ word length w
w←−

SAlice ∩ SBob
?
= ∅



Contribution of this ChapterContribution of this ChapterContribution of this ChapterContribution of this ChapterContribution of this ChapterContribution of this Chapter

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis
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Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS
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O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]
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On Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of Graphs

D Bounded Tree-width [CZ00]
Space O(n), Exact

D Planar [Tho04, Kle02] & Minor-free [AG06] & Bounded
Doubling Dimension [Tal04]
Space Õ(n), Stretch (1 + ε, 0)

D Road Networks
Efficient in Practice

D Other Real-World Networks?



Power-law GraphsPower-law GraphsPower-law GraphsPower-law GraphsPower-law GraphsPower-law Graphs

Power Law Distribution

D Random Variable D, Power Law Exponent τ ∈ (2, 3)

Pr[D = x ] ∼ x−τ

Many Complex Networks are reported to have Power-law Degree
Sequences  most nodes have few neighbors, few nodes have high
degrees

D Social Networks

D Internet (?)

D Protein Interaction Networks

D Citation Graph

D Web Graph (Hyperlinks)

D ...



Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?

D Unbounded Tree-width

D Not Planar & Not Minor-free & Unbounded Doubling
Dimension
(No small separators)

D  General Distance Oracle?

D Experiments show: [TZ05] works quite well (small space
consumption) [KFY04, Section IV.B]



Distance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law Graphs

D Experiments show: [TZ05] works quite well (small space
consumption) [KFY04, Section IV.B]

D Common heuristic: route through nodes with high degree

D This thesis: proof why [TZ05] works well on Power-law
Graphs and why high-degree heuristic is good

D Chung-Lu Random Power-law Graphs
D [TZ05] using high-degree nodes uses space O(n1+γ), γ < 1

3
with high probability
instead of space O(n1+ 1

2 )



Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G ) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark



Random SamplingRandom SamplingRandom SamplingRandom SamplingRandom SamplingRandom Sampling

D
A

E

B

C
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√
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B(u) := {v ∈ V (G ) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark
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Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G ) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark
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Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G ) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark



Query Source in BallQuery Source in BallQuery Source in BallQuery Source in BallQuery Source in BallQuery Source in Ball

D
A

E

B

C



Query Source not in BallQuery Source not in BallQuery Source not in BallQuery Source not in BallQuery Source not in BallQuery Source not in Ball

D
A

E

B

C
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Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G ) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark



Modified Thorup ZwickModified Thorup ZwickModified Thorup ZwickModified Thorup ZwickModified Thorup ZwickModified Thorup Zwick

Preprocessing

D O(nγ) High-degree Nodes as Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(nγ))

B(u) := {v ∈ V (G ) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark



Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)

Idea: when growing a ball from u,...

D either detect a node with high degree  X
D Chung-Lu model: node degree is proportional to a potential

value
D Nodes are connected based on this potential value

D or all nodes have small degree  small ball growth X



Distance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law Graphs

D High-Degree Heuristic is Provably Good for Random
Power-law Graphs

D First Approach without Separators (or similar)

D Efficient Preprocessing and Low Space Consumption
(significantly better than [TZ05] for general graphs)

D Multiplicative (worst-case) Stretch 3
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A Practical MethodA Practical MethodA Practical MethodA Practical MethodA Practical MethodA Practical Method

D Works for a variety of graphs

D Related work: mostly transportation networks
D Previous result: high-degree heuristic fails for general networks,

still O(n1+ε) preprocessing and space

D Efficient

D fast preprocessing
D significantly faster than Dijkstra’s algorithm to answer queries

D Simple
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Graph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi Diagram

D Mehlhorn [Meh88] and Erwig [Erw00]

D Can be constructed in time O(m + n lg n) using Dijkstra’s
algorithm once  very efficient

D Graph Voronoi Dual can also be constructed using one SSSP
search



Voronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query Method

Preprocessing

D Random Sampling of Voronoi Nodes

D Voronoi Dual

Query d(u, v)

D Shortest Path between vor(u) and vor(v) in Voronoi Dual

D (Optional) Refinement: Shortest Path in Voronoi Regions
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Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?

D Theoretical bound: expected O
(

lg `
lg 1

1−p

)
D for paths with ` edges
D sampling probability p

D Experimental

D 1 + ε for road networks
D less than 2 for complex networks
D does not depend on `
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SummarySummarySummarySummarySummarySummary

D Very efficient preprocessing

D Competitive query time

D Simple

D ... but not exact

D Can trade query time vs. stretch

D Average-case stretch?
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ConclusionConclusionConclusionConclusionConclusionConclusion

Contribution of this thesis

D Proof that there is no efficient (o(lg n) query time) distance
oracle with space O(m)

D [TZ05] works provably well for power-law graphs

D There is a practically efficient distance oracle with space O(m)
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