
Approximate Shortest Path and
Distance Queries in Networks

Christian Sommer

January 2010

OutlineOutlineOutlineOutlineOutlineOutline

D Introduction

D Motivation
D Related Work

D Space Lower Bound

D Distances in Power-Law Graphs

D A Practical Method

D Conclusion

MotivationMotivationMotivationMotivationMotivationMotivation

F

G

D
A

E

B

C

MotivationMotivationMotivationMotivationMotivationMotivation

F

G

D
A

E

B

C

MotivationMotivationMotivationMotivationMotivationMotivation

Efficiently find a Shortest Path between Pairs of Nodes in

D Transportation Networks

D Social Networks

D Computer Networks (Internet)

D Protein Interaction Networks

D ...

Shortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance Oracles

D Preprocess a graph G with n nodes and m edges ...

D ... to create a Data Structure, using which ...

D ... we can efficiently answer Distance Queries.

D d(u, v)

Shortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance OraclesShortest Path Queries / Distance Oracles

D Preprocess a graph G with n nodes and m edges ...

D ... to create a Data Structure, using which ...

D ... we can efficiently answer Approximate Distance Queries.

D d̃(u, v)

Approximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — Stretch

D Distance between u and v in graph G : dG (u, v)

D Oracle Result d̃(u, v) satisfies

dG (u, v) 6 d̃(u, v) 6 α · dG (u, v) + β.

D Stretch (α, β)

D Multiplicative Stretch α
D Additive Stretch β

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs

D Restricted classes (planar, bounded tree-width,
minor-closed,...)

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs

D Restricted classes (planar, bounded tree-width,
minor-closed,...)

Shortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation NetworksShortest Path Queries in Transportation Networks

D Main focus, large body of research since 60’s/70’s

D Big progress around 2006 (DIMACS Implementation
Challenge)

D Preprocessing: tens of minutes for road map of the US/EU
D Query time: ≈ 106 times faster than Dijkstra’s algorithm

D Ideas

D Geometry, coordinates, A* search [SV86]
D Goal-directed search (A* for graphs) [GH05]
D Hierarchical structures [SS05, BFSS07, BD08, BDS+08]

D Heuristics that work very well for road networks (often need
separators)

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs — unweighted if not stated
otherwise

D Restricted classes (planar, bounded tree-width,
minor-closed,...)

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis
 (Almost) Optimal Space/Stretch Tradeoff

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs

D Restricted graph classes (planar, bounded tree-width,
minor-closed,...)

On Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of Graphs

D Bounded Tree-width [CZ00]
Space O(n), Exact

D Planar [Tho04, Kle02] & Minor-free [AG06] & Bounded
Doubling Dimension [Tal04]
Space Õ(n), Stretch (1 + ε, 0)

OutlineOutlineOutlineOutlineOutlineOutline

D Introduction

D Space Lower Bound

D Distances in Power-Law Graphs

D A Practical Method

D Conclusion

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis

On Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of Graphs

D Bounded Tree-width [CZ00]
Space O(n), Exact

D Planar [Tho04, Kle02] & Minor-free [AG06] & Bounded
Doubling Dimension [Tal04]
Space Õ(n), Stretch (1 + ε, 0)

D All Sparse Graphs?

Space Lower BoundSpace Lower BoundSpace Lower BoundSpace Lower BoundSpace Lower BoundSpace Lower Bound

Theorem
D For sufficiently large graphs (n > n∗ nodes),

D any (α, 0)–approximate distance oracle

D with query time at least t

D requires space

S > n1+Ω(1
αt)/ lg n.

Comparison with Related WorkComparison with Related WorkComparison with Related WorkComparison with Related WorkComparison with Related WorkComparison with Related Work

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis

Comparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” GraphsComparison with Related Work — “Hard” Graphs

D “hard” graphs in Thorup and Zwick’s lower bound have
average degree Θ

(
n2/α

)
 very dense

TZ actually prove space Ω(m)

D This proof: regular graphs with degree

Θ

((
8twα
lg n

)2/C
)
6 polylog(n)

D query time t
D word length w
D (multiplicative) stretch α
D constant C ∈ [0, 1]

proves space ω(m)

D Distance oracles for sparse graphs also require large space:
Before: Ω(n · polylog(n))
Now: Ω

(
n1+ε

)

Proof IdeaProof IdeaProof IdeaProof IdeaProof IdeaProof Idea

D Reduction from Distance Oracle to a Communication Protocol

D This Protocol efficiently solves the
LopsidedSetDisjointness Problem
from Communication Complexity

D But: There is a Communication Lower Bound for the
LopsidedSetDisjointness Problem

D Space Lower Bound for the Distance Oracle

LopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointnessLopsidedSetDisjointness

Alice Bob

SAlice ⊆ U U SBob ⊆ U

−→
←−
−→
←−

SAlice ∩ SBob
?
= ∅

Data Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication ProtocolData Structure reduces to Communication Protocol

Alice Bob

SAlice ⊆ U U SBob ⊆ U
f (SAlice) f : U ↔ E f (SBob)

Query ↑ Data Structure ↑
t rounds size S

lgS−→ word length w
w←−
−→
←−

SAlice ∩ SBob
?
= ∅

[PT06, Pat08]

“Hard” Graphs“Hard” Graphs“Hard” Graphs“Hard” Graphs“Hard” Graphs“Hard” Graphs

Expander Graphs [LPS88]

D n nodes, degree Θ

((
8twα
lg n

)2/C
)
6 polylog(n)

D girth O(lg n) (girth: length of shortest cycle)

D many disjoint paths (≈ α times shorter than the girth)

D Distance oracle for sparse graphs must be able to handle
expander graphs and all their subgraphs

D (α, 0)–approximate distance oracle must handle distance
queries in time t

D (in particular for the endpoints of these paths ↑)

Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

G = (V ,E)

Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice)

Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SBob)

Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice) f (SBob)

t rounds size S

lgS−→ word length w

w←−

SAlice ∩ SBob
?
= ∅

Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice) G ′ = (V ,E \ f (SBob))

t rounds Oracle for G ′, size S
lgS−→ word length w
w←−

SAlice ∩ SBob
?
= ∅

Path Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” pathsPath Queries and the Girth – not “too long” paths

D query d̃G ′(u, v) for a shortest path from u to v in G
(path not “too long”)
 decide whether the path is contained in G ′

u v`

> α`

> α`

D d̃G ′(u, v) 6 α` all edges of the path are in E (G ′)

D d̃G ′(u, v) > α` otherwise (since the girth is large)

Almost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointnessAlmost LopsidedSetDisjointness

Alice Bob

f (SAlice) G ′ = (V ,E \ f (SBob))

t rounds Oracle for G ′, size S
lgS−→ word length w
w←−

SAlice ∩ SBob
?
= ∅

Contribution of this ChapterContribution of this ChapterContribution of this ChapterContribution of this ChapterContribution of this ChapterContribution of this Chapter

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis

OutlineOutlineOutlineOutlineOutlineOutline

D Introduction

D Space Lower Bound

D Distances in Power-Law Graphs

D A Practical Method

D Conclusion

On Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected GraphsOn Distance Oracles for General Undirected Graphs

Preprocessing Space Query Stretch Reference

O(mn) O(n2) O(1) (1, 0) APSP
O(1) O(m) O(m) (1, 0) BFS

Õ(kmn1/k) O(kn1+1/k) O(k) (2k − 1, 0) [TZ05, RTZ05]

O(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BS06]

Õ(n2) O(n3/2) Θ(lg n) (3, 0) [BK06]

Õ(n2) O(kn1+1/k) O(k) (2k − 1, 0) [BK06], k > 3

O(m + n23/12) O(n3/2) O(1) (3, 10) [BGSU08]

Õ(mn1/k) O(n1+1/k) O(1) (O(k), 0) [MN06, MS08]

Ω(n1+1/k) < (2k + 1, 0) [TZ05]

n1+Ω(1/t) t < (1, 2) thesis/[Pat08]

n1+Ω(1/αt) t 6 (α, 0) this thesis

On Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of GraphsOn Distance Oracles for Special Classes of Graphs

D Bounded Tree-width [CZ00]
Space O(n), Exact

D Planar [Tho04, Kle02] & Minor-free [AG06] & Bounded
Doubling Dimension [Tal04]
Space Õ(n), Stretch (1 + ε, 0)

D Road Networks
Efficient in Practice

D Other Real-World Networks?

Power-law GraphsPower-law GraphsPower-law GraphsPower-law GraphsPower-law GraphsPower-law Graphs

Power Law Distribution

D Random Variable D, Power Law Exponent τ ∈ (2, 3)

Pr[D = x] ∼ x−τ

Many Complex Networks are reported to have Power-law Degree
Sequences most nodes have few neighbors, few nodes have high
degrees

D Social Networks

D Internet (?)

D Protein Interaction Networks

D Citation Graph

D Web Graph (Hyperlinks)

D ...

Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?Distance Oracles for Power-law Graphs?

D Unbounded Tree-width

D Not Planar & Not Minor-free & Unbounded Doubling
Dimension
(No small separators)

D General Distance Oracle?

D Experiments show: [TZ05] works quite well (small space
consumption) [KFY04, Section IV.B]

Distance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law Graphs

D Experiments show: [TZ05] works quite well (small space
consumption) [KFY04, Section IV.B]

D Common heuristic: route through nodes with high degree

D This thesis: proof why [TZ05] works well on Power-law
Graphs and why high-degree heuristic is good

D Chung-Lu Random Power-law Graphs
D [TZ05] using high-degree nodes uses space O(n1+γ), γ < 1

3
with high probability
instead of space O(n1+ 1

2)

Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark

Random SamplingRandom SamplingRandom SamplingRandom SamplingRandom SamplingRandom Sampling

D
A

E

B

C

Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark

SSSP for all landmarks (fig. for one landmark)SSSP for all landmarks (fig. for one landmark)SSSP for all landmarks (fig. for one landmark)SSSP for all landmarks (fig. for one landmark)SSSP for all landmarks (fig. for one landmark)SSSP for all landmarks (fig. for one landmark)

D
A

E

B

C

SSSP for all landmarks (fig. for one node)SSSP for all landmarks (fig. for one node)SSSP for all landmarks (fig. for one node)SSSP for all landmarks (fig. for one node)SSSP for all landmarks (fig. for one node)SSSP for all landmarks (fig. for one node)

D
A

E

B

C

Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark

Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)

D
A

E

B

C

Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)

D
A

E

B

C

Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)Ball Computation (fig. for one node)

D
A

E

B

C

Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark

Query Source in BallQuery Source in BallQuery Source in BallQuery Source in BallQuery Source in BallQuery Source in Ball

D
A

E

B

C

Query Source not in BallQuery Source not in BallQuery Source not in BallQuery Source not in BallQuery Source not in BallQuery Source not in Ball

D
A

E

B

C

Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3

v

u

`v
`u

d(u, v)

d(v , `v)

d(u, `v)

d(u, `v) + d(v , `v) 6 3d(u, v)

Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3

v

u

`v
`u

d(u, v)

6 d(u, v)

d(u, `v)

d(u, `v) + d(v , `v) 6 3d(u, v)

Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3Multiplicative Stretch 3

v

u

`v
`u

d(u, v)

6 d(u, v)

6 2d(u, v)

d(u, `v) + d(v , `v) 6 3d(u, v)

Distance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & ZwickDistance Oracle by Thorup & Zwick

Preprocessing

D Random Sampling of O(
√

n) Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(
√

n))

B(u) := {v ∈ V (G) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark

Modified Thorup ZwickModified Thorup ZwickModified Thorup ZwickModified Thorup ZwickModified Thorup ZwickModified Thorup Zwick

Preprocessing

D O(nγ) High-degree Nodes as Landmarks

D SSSP for each Landmark

D Ball B(u) for each Node u (expected size O(nγ))

B(u) := {v ∈ V (G) : dG (u, v) < dG (u, `u)},

where `u denotes u’s nearest landmark

Query d(u, v)

D If v ∈ B(u) (or vice versa u ∈ B(v)) return exact distance

D Otherwise u → `v → v , where `v denotes v ’s nearest
landmark

Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)Idea of Proof that Balls have Size at most O(nγ)

Idea: when growing a ball from u,...

D either detect a node with high degree X
D Chung-Lu model: node degree is proportional to a potential

value
D Nodes are connected based on this potential value

D or all nodes have small degree small ball growth X

Distance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law GraphsDistance Oracles for Power-law Graphs

D High-Degree Heuristic is Provably Good for Random
Power-law Graphs

D First Approach without Separators (or similar)

D Efficient Preprocessing and Low Space Consumption
(significantly better than [TZ05] for general graphs)

D Multiplicative (worst-case) Stretch 3

OutlineOutlineOutlineOutlineOutlineOutline

D Introduction

D Space Lower Bound

D Distances in Power-Law Graphs

D A Practical Method

D Conclusion

A Practical MethodA Practical MethodA Practical MethodA Practical MethodA Practical MethodA Practical Method

D Works for a variety of graphs

D Related work: mostly transportation networks
D Previous result: high-degree heuristic fails for general networks,

still O(n1+ε) preprocessing and space

D Efficient

D fast preprocessing
D significantly faster than Dijkstra’s algorithm to answer queries

D Simple

Voronoi DiagramVoronoi DiagramVoronoi DiagramVoronoi DiagramVoronoi DiagramVoronoi Diagram

F

G

D
A

E

B

C

Voronoi Dual: Delaunay TriangulationVoronoi Dual: Delaunay TriangulationVoronoi Dual: Delaunay TriangulationVoronoi Dual: Delaunay TriangulationVoronoi Dual: Delaunay TriangulationVoronoi Dual: Delaunay Triangulation

F

G

D
A

E

B

C

Voronoi Diagram for a Graph?Voronoi Diagram for a Graph?Voronoi Diagram for a Graph?Voronoi Diagram for a Graph?Voronoi Diagram for a Graph?Voronoi Diagram for a Graph?

F

G

D
A

E

B

C

Graph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi Diagram

F

G

D
A

E

B

C

Graph Voronoi Dual — not necessarily triangulatedGraph Voronoi Dual — not necessarily triangulatedGraph Voronoi Dual — not necessarily triangulatedGraph Voronoi Dual — not necessarily triangulatedGraph Voronoi Dual — not necessarily triangulatedGraph Voronoi Dual — not necessarily triangulated

F

G

D
A

E

B

C

Graph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi DiagramGraph Voronoi Diagram

D Mehlhorn [Meh88] and Erwig [Erw00]

D Can be constructed in time O(m + n lg n) using Dijkstra’s
algorithm once very efficient

D Graph Voronoi Dual can also be constructed using one SSSP
search

Voronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query MethodVoronoi Approximate Shortest Path Query Method

Preprocessing

D Random Sampling of Voronoi Nodes

D Voronoi Dual

Query d(u, v)

D Shortest Path between vor(u) and vor(v) in Voronoi Dual

D (Optional) Refinement: Shortest Path in Voronoi Regions

Voronoi Method — QueryVoronoi Method — QueryVoronoi Method — QueryVoronoi Method — QueryVoronoi Method — QueryVoronoi Method — Query

F

G

D
A

E

B

C

Voronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in Dual

F

G

D
A

E

B

C

Voronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in DualVoronoi Method — Query: Search in Dual

F

G

D
A

E

B

C

Voronoi Method — Query: Search in ⊆ PrimalVoronoi Method — Query: Search in ⊆ PrimalVoronoi Method — Query: Search in ⊆ PrimalVoronoi Method — Query: Search in ⊆ PrimalVoronoi Method — Query: Search in ⊆ PrimalVoronoi Method — Query: Search in ⊆ Primal

F

G

D
A

E

B

C

Voronoi Method — Query ResultVoronoi Method — Query ResultVoronoi Method — Query ResultVoronoi Method — Query ResultVoronoi Method — Query ResultVoronoi Method — Query Result

F

G

D
A

E

B

C

Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?Graph Voronoi Diagram — Stretch?

D Theoretical bound: expected O
(

lg `
lg 1

1−p

)
D for paths with ` edges
D sampling probability p

D Experimental

D 1 + ε for road networks
D less than 2 for complex networks
D does not depend on `

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

u v

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a
a− 1 1

6 1

u v

w

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a
a− 1 1

6 1

u v

w

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a
a− 1 1

6 1

≈ a + 2

u v

w

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

u v

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

u v

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

u v

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

≈ `a

u v

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

u v

Voronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — StretchVoronoi Method — Stretch

a

u v

expected O
(

lg `
lg 1

1−p

)

SummarySummarySummarySummarySummarySummary

D Very efficient preprocessing

D Competitive query time

D Simple

D ... but not exact

D Can trade query time vs. stretch

D Average-case stretch?

OutlineOutlineOutlineOutlineOutlineOutline

D Introduction

D Space Lower Bound

D Distances in Power-Law Graphs

D A Practical Method

D Conclusion

ConclusionConclusionConclusionConclusionConclusionConclusion

Contribution of this thesis

D Proof that there is no efficient (o(lg n) query time) distance
oracle with space O(m)

D [TZ05] works provably well for power-law graphs

D There is a practically efficient distance oracle with space O(m)

Thank you!Thank you!Thank you!Thank you!Thank you!Thank you!

Thank you!Thank you!Thank you!Thank you!Thank you!Thank you!

Rey Abe, Ittai Abraham, Hikari Aikawa, Alicia Aponte, Yuki Arase, Cyrille Artho, Jörg Aschwanden, David M. Avis, Yukino
Baba, Valentina Baljak, Nik Nailah Binti Abdullah, Guillaume Bouvet, Samuel Burri, Ulrike Campbell & Glenn, Nicholas
Campiz, Gary & Mami Chandler, Kun Chen, Wei Chen, Kazuo Chiba, Chad Clark, Edward Clease, Leticia Cuellar, Erik D.
Demaine, Joachim Dirks, Hristo Djidjev, Takuo Doi, Adrian Doswald, Sébastien Duval, Stephan Eidenbenz (and family),
Jittat Fakcharoenphol, Daisuke Fukuchi, Pierre-Löıc Garoche, Cyril Gavoille, Filiz Gencer, Jacopo Grazzini, Nizar Grira,
Leonid Gurvits, Daniel & Monika Hagemeier, Martin Halter, Rie Hatanaka (and family), Nicolas W. Hengartner, Roger
Herzog, Katsushige Hino, Jon Holmes, Shinichi Honiden, Michael E. Houle, Jaimie Hwang, Takeo Igarashi, Hiroshi Imai,
Julia Imhof, Mizuki Inoue, Rihoko Inoue, Fuyuki Ishikawa, Katsuro Ishimasa, Tanja Isker, Moritz Isler, Nicolas Jegou,
Jay Johannesen, Chika Kanai, Shiva Kasiviswanathan, Satoshi Kataoka, Douglas D. Kautz, Yojiro Kawamata, Ken-
ichi Kawarabayashi, Daniel Kershner, Junichi ‘Andy’ Kimura, Jumi Klaus, Adrian Klein, Gordon Kanki Knight, Yusuke
Kobayashi, Lukas Kroc, Mitsuhiko & Yuko Kusuyama, Stephen Lacey, Christiane Lange, Stephan Langermann, Brett
Larner, Jason Lawrence, Xiang-Yang Li, Maxim Makatchev, Carrie Manore, Koichi Matsumoto, Yasuyuki Matsushita,
Kazutaka Matsuzaki, Petar Maymounkov, John & Yuki Mettraux, Martin Mevissen, Omar Minami, Teruyuki Minegishi,
Keren Miers, Felix Mösner, Hirotaka Moriguchi, Mohammad Reza Motallebi, Machiko & Yoshinobu Nagura, Hiroyuki
& Miki Nakagawa (and Family Nishida in Takatsuki), Yoshiyuki Nakamura, Hikotoshi Nakazato, Michael Nett, Satohi
Numasawa, Johan Nyström, Paddy O’Connor, Kyoko Oda, Akemi Okado, Chieko Okamoto, Yoshio Okamoto, Masae Ono,
Rie Onodera, Takeshi Ozawa, Eric Platon, Bob Poulson, Hans Prisi, Gareth Pughe, José Ghislain Quenum, Daniele Quercia,
Fabrizio Raponi, Jerry Ray, Martin Rehak, Gerard Robb, David Roberts, David Motozo Rubenstein, Cedric S. Rutishauser,
Philip Ryan, Kunihiko Sadakane, Hitomi Sakamoto, Nandakishore Santhi, Chikako, Tomoaki, & Noriaki Sawada, Tomoko
Sawada, Yuzuru Sawato, Christoph Saxer, Hannes Schneebeli, Gabriel Schweizer, Yuichi Sei, Ryota Seike, Tetsuo Shibuya,
Akiko Shimazu, Shunichiro Suenaga, Yuka Shigihara, Uwe Sievers, Weihuan Shu, Lolan Song, Hansruedi, Hermine, and
Stefan Sommer, Thomas, Kati & Lars Spirig, Toshiro ‘Joe’ Suzuki, Kenji Taguchi, Yasuyuki Tahara, Ryuichi Takahashi,
Keren Tan, Ryu Tatsumi, ‘Tommy’, Kenji Tei, Shang-Hua Teng, Mikkel Thorup, Sunil Thulasidasan, Ai Tobimatsu, Mika
Tokairin, Shigeko Tokuda, Susumu Toriumi, Georg Troxler, Eric Tschetter, Ryudo Tsukizaki, Takeaki Uno, Elad Verbin,
Martin Verdier, Vishwanath Venkatesan, Yajun Wang, Martin Wenk, Hermann Werner, Stefan Wolf, Martin Wolff, Jürgen
Wittstock, Shuko Yamada, Ken Yamagata, Kayoko Yamamoto, Guanhua Yan, Andrew Yao, Kiyonari Yoshida, Nobukazu
Yoshioka, Wei Yu, Jialin Zhang, Yuan Zhou, Peter & Ursi Zürcher, Uri Zwick

Ittai Abraham and Cyril Gavoille.

Object location using path separators.

In Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles
of Distributed Computing, PODC 2006, Denver, CO, USA, July 23-26,
2006, pages 188–197, 2006.

Details in LaBRI Research Report RR-1394-06.

Reinhard Bauer and Daniel Delling.

SHARC: Fast and robust unidirectional routing.

In Proceedings of the 10th Workshop on Algorithm Engineering and
Experiments (ALENEX’08), pages 13–26, 2008.

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner.

Combining hierarchical and goal-directed speed-up techniques for
Dijkstra’s algorithm.

In Experimental Algorithms, 7th International Workshop (WEA’08),
Provincetown, MA, USA, May 30-June 1, 2008, Proceedings, pages
303–318, 2008.

Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes.

Fast routing in road networks with transit nodes.

Science, 316(5824):566, 2007.

Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay.

Distance oracles for unweighted graphs: Breaking the quadratic barrier
with constant additive error.

In Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and
Games, pages 609–621, 2008.

Surender Baswana and Telikepalli Kavitha.

Faster algorithms for approximate distance oracles and all-pairs small
stretch paths.

In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, pages
591–602, 2006.

Surender Baswana and Sandeep Sen.

Approximate distance oracles for unweighted graphs in expected O(n2)
time.

ACM Transactions on Algorithms, 2(4):557–577, 2006.

Announced at SODA 2004.

Shiva Chaudhuri and Christos D. Zaroliagis.

Shortest paths in digraphs of small treewidth. part I: Sequential
algorithms.

Algorithmica, 27(3):212–226, 2000.

Announced at ICALP 1995.

Martin Erwig.

The graph Voronoi diagram with applications.

Networks, 36(3):156–163, 2000.

Andrew V. Goldberg and Chris Harrelson.

Computing the shortest path: A* search meets graph theory.

In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’05), Vancouver, British Columbia, Canada,
January 23-25, 2005, pages 156–165, 2005.

Dmitri V. Krioukov, Kevin R. Fall, and Xiaowei Yang.

Compact routing on internet-like graphs.

In INFOCOM, 2004.

Philip Nathan Klein.

Preprocessing an undirected planar network to enable fast approximate
distance queries.

In Symposium on Discrete Algorithms (SODA), pages 820–827, 2002.

Alexander Lubotzky, R. Phillips, and Peter Sarnak.

Ramanujan graphs.

Combinatorica, 8(3):261–277, 1988.

Kurt Mehlhorn.

A faster approximation algorithm for the Steiner problem in graphs.

Information Processing Letters, 27(3):125–128, 1988.

Manor Mendel and Assaf Naor.

Ramsey partitions and proximity data structures.

In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA,
Proceedings, pages 109–118, 2006.

Manor Mendel and Chaya Schwob.

C-K-R partitions of sparse graphs.

CoRR, abs/0809.1902, 2008.

Mihai Patrascu.

(Data) STRUCTURES.

In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 434–443,
2008.

Mihai Patrascu and Mikkel Thorup.

Time-space trade-offs for predecessor search.

In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, Seattle, WA, USA, May 21-23, 2006, pages 232–240, 2006.

Liam Roditty, Mikkel Thorup, and Uri Zwick.

Deterministic constructions of approximate distance oracles and spanners.

In Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005,
Proceedings, pages 261–272, 2005.

Peter Sanders and Dominik Schultes.

Highway hierarchies hasten exact shortest path queries.

In Algorithms - ESA 2005, 13th Annual European Symposium, Palma de
Mallorca, Spain, October 3-6, 2005, Proceedings, pages 568–579, 2005.

Robert Sedgewick and Jeffrey Scott Vitter.

Shortest paths in euclidean graphs.

Algorithmica, 1(1):31–48, 1986.

Announced at FOCS 1984.

Kunal Talwar.

Bypassing the embedding: algorithms for low dimensional metrics.

In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 281–290, 2004.

Mikkel Thorup.

Compact oracles for reachability and approximate distances in planar
digraphs.

Journal of the ACM, 51(6):993–1024, 2004.

Announced at FOCS 2001.

Mikkel Thorup and Uri Zwick.

Approximate distance oracles.

Journal of the ACM, 52(1):1–24, 2005.

Announced at STOC 2001.

	Space Lower Bound

