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r* 28. Tum right at NE Northlake Way
29, Kayak across the Pacific Ocean
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Shortest-Path Queries / Distance Oracles

% Preprocess a graph G with n nodes and m edges ...

% ... to create a Data Structure, using which ...

% ... we can efficiently answer Distance Queries.

% d(u,v)
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Shortest-Path Queries / Distance Oracles

% Preprocess a graph G with n nodes and m edges ...

% ... to create a Data Structure, using which ...

% ... we can efficiently answer Approximate Distance Queries.

% d(u,v)

¢ Tradeoffs between Stretch, Space, and Query Time



Approximate Distance Oracles — Stretch

o Distance between v and v in graph G: dg(u,v)
% Oracle Result d(u, v) satisfies

de(u,v) < d(u,v) <(1+¢€)-dg(u,v).

% Multiplicative Stretch 1+ €



Related Work

Practical

% Focus on Transportation Networks

Theoretical
% General, undirected graphs

% Restricted classes (planar, bounded tree-width, bounded
genus, minor-closed,...)



Shortest-Path Queries in Transportation Networks

¢ Main focus, large body of research since 60's/70's
« Big progress around 2006 (DIMACS Implementation
Challenge)

 Preprocessing: tens of minutes for road map of the US/EU
% Query time: ~ 10° times faster than Dijkstra’s algorithm

% ldeas

% Geometry, coordinates, A* search [SV86]
% Goal-directed search (A* for graphs) [GHO5]
% Hierarchical structures [SS05, BFSS07, BD08, BDS*08]

¢ Methods that work very well for road networks (separators)
% ~ see also Session A9, Wednesday ©@12:00



Related Work

Practical

% Focus on Transportation Networks

Theoretical

% General, undirected graphs
large stretch or large space, or long query time

% Restricted graph classes (planar, small tree-width, bounded
genus, minor-closed,...)

% ~> see also Session A6, Tuesday @11:00



Space vs. Query Time for Exact Shortest Paths
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State of the Art

Approximate Distance Oracles for
Planar/Bounded-Genus/Minor-free Graphs

Efficient preprocessing | O(ne=2log> n) O(poly(n,e™1))
Quasilinear space O(ne~logn) O(ne~logn)
Fast query time O(e™h) O(e tlogn)

| Planar [Tho04] | Minor-free [AGO6] |




State of the Art and Results

Approximate Distance Oracles for
Planar/Bounded-Genus/Minor-free Graphs

Prepro | O(ne=2log> n) O(ne2log® n) O(poly(n,e™1))
Space O(ne tlogn) | O(ne (g +logn)) O(ne~Llogn)
Query O(e™h) O(ge™) O(e tlogn)

| Planar [Tho04] | Genus g | Minor-free [AGO6]
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(1 + €)-Approximate Shortest-Path Queries; Planar G

’ Preprocessing ‘ Space ‘ Query ‘ Reference
O(ne™?1g* n) O(n-etig?n) | O(e™* +1glgn) [ThoO4, Thm.3.16]
O(netig® n) O(n-etig?n) | O(e™* +lgnlglgn) | [ThoO4, Prop.3.14]
O(n(e7t +1gn)lg®n) | O(n-etlg?n) | O(e ' +Ignlglgn) | [Kle05, Sec.7]
O(ne?1g® n) O(n-etlign) | O(c™h) [ThoO4, Thm.3.19]
O(ne™t1g? n) O(n-etign) | O(etlgn) [ThoO4, Implicit]

Assumption for this table: largest integer weight N = O(poly(n))
(complexity of oracles for planar digraphs depends on N)



Planar Separators, Graph G = (V. E)

Partition V into V4, Vb, S
such that | V1], |V2| < 5, no edge between Vi, V5, and

¢ Lipton and Tarjan [LT80], Miller [Mil86]
% s.t. |S|=0O(v/n)
o Shortest paths may cross S up to O(+/n) times

% Thorup [ThoO4]

% s.t. S consists of 3 shortest paths
% can be extended to minor-closed families [AG06]

¢ Dieng and Gavoille [DGO09]
% s.t. S consists of O(1) shortest paths of length “tree-length”



Main Technigues of Thorup’'s Distance Oracle

% Partition V into Vi, V2, S such that V4], | V2| < 5 and

% s.t. S consists of 3 shortest paths @
% ~> shortest paths cannot cross many times

% Representation of paths that intersect Q
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O(1/€) connections ¢~
s.t. d(v, q)







Space Consumption of Thorup's Distance Oracle

% Recursive partition using 3 shortest paths Q per level
% O(log n) shortest-path separators per node

¢ Representation of paths that intersect @
% store O(1/€) connections

% Total storage: O(e¢~!log n) connections per node



Space Consumption of Thorup's Distance Oracle

% Recursive partition using 3 shortest paths Q per level
% O(log n) shortest-path separators per node

% Representation of paths that intersect Q
% store O(1/e) connections

% Total storage: O(e~!log n) connections per node

¢ “Reasonable” values:
% n~~ 107, ~ log, n ~ 20



Experimental Results [MZ07]
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Space Consumption of Thorup's Distance Oracle

% Recursive partition using 3 shortest paths Q per level
 O(log n) shortest-path separators per node

¢ Representation of paths that intersect @
% store O(1/€) connections

% Total storage: O(e¢~!log n) connections per node

% “Reasonable” values:
% n=~~ 107, ~ log, n ~ 20
* e=x%
< O(-)-constants quite small BUT 20 GBs for ¢ = 1% [MZ07]



The total number of connections constructed during preprocessing gives an
indication of the memory consumption of the oracle. In the current implemen-
tation, one connection consists of two floats, which is 8 bytes in total. The total
number of connections for the FLA instance with € = 0.01 is around 250 million,
which results in a memory consumption of about 2GB. The number of connec-
tions is strongly affected by e. When ¢ is increased to 0.10 for the same instance,
the number of connections drops to just under 100 million.
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(1 + €)-Approximate Shortest-Path Queries; Planar G

Preprocessing ‘ Space ‘ Query Reference
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Linear-Space Distance Oracle: Main Idea

« store connections for few nodes (landmarks)
~> boundary of r—division

« at query time, search landmark then use [Tho04]



r=divisions [Fre87]

separate recursively (e.g. using [Mil86]) into

% O(n/r) regions
* region size O(r)
% region boundary O(y/r) ~ total boundary O(n/+/r)
























Distance Oracle: Space vs. Query Time

% Space: store connections for boundary of r—division
~ O(% - e llogn)

Linear Space: /r = e llogn
% Query time:

% search landmark O(r) [HKRS97]
< merge O(y/r - e llogn) connections [ThoO4]



Distance Oracle: Space vs. Query Time

% Space: store connections for boundary of r—division
> O(\% - e Llogn)
Linear Space: \/r = ¢ ‘logn
Sublinear Additional Space: \/r > ¢ logn

% Query time:
o search landmark O(r) [HKRS97]
recursion for large r
< merge O(y/r - e llogn) connections [ThoO4]



Distance Oracle: Space vs. Query Time

% Space: store connections for boundary of r—division
> O(\% - e Llogn)
Linear Space: \/r = ¢ ‘logn
Sublinear Additional Space: \/r > ¢ logn

% Query time:
o search landmark O(r) [HKRS97]
recursion for large r

< merge O(y/r - e 'logn) connections [ThoO4]
clever merge?
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State of the Art and Results

Linear-Space Approximate Distance Oracles for
Planar/Bounded-Genus/Minor-free Graphs
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Preprocessing Improvements

[ThoO4] ne=2log* n ~» NEW nlog? n

% Use preprocessing for slower query time
implicit in [Tho04], ne~*log3 n

% Main idea: compute connections only for boundary nodes
Numbers:
% amortized log? n per connection?
% only n connections ~~ nlog? n total time?

% Proof: Can be done efficiently using dynamic trees as
in [Kle05]









MSSF,



Klein's MSSP data structure [Kle05]

preprocess G, f
O(nlg n) time & space



Klein's MSSP data structure [Kle05]

query d(q, v)
O(lg n) time
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Contributions and Outlook

o (Sub-)Linear-Space Approximate Distance Oracle
Fast Preprocessing

% Application determines how much space S > m,
our tradeoffs tell how to use it for fast query time Q
(similar result for exact [MS10])

% Main open theory question: optimal use?
Exact S-Q>nyn ?
(14 ¢)-Approximate  S-Q > nlgn ?
(1+€) & Unweighted S-Q < nlglgnlglglgn !
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