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Compact routing addresses the tradeoff between table sizes and stretch, which is the worst-case ratio be-
tween the length of the path a packet is routed through by the scheme and the length of an actual shortest
path from source to destination. We adapt the compact routing scheme by Thorup and Zwick (SPAA 2001) to
optimize it for power-law graphs. We analyze our adapted routing scheme based on the theory of unweighted
random power-law graphs with fixed expected degree sequence by Aiello, Chung, and Lu (STOC 2000). Our
result is the first analytical bound coupled to the parameter of the power-law graph model for a compact
routing scheme.

Let n denote the number of nodes in the network. We provide a labeled routing scheme that, after a
stretch–5 handshaking step (similar to DNS lookup in TCP/IP), routes messages along stretch–3 paths.
We prove that, instead of routing tables with Õ(n1/2) bits (Õ suppresses factors logarithmic in n) as in
the general scheme by Thorup and Zwick, expected sizes of O(nγ logn) bits are sufficient, and that all
the routing tables can be constructed at once in expected time O(n1+γ logn), with γ = τ−2

2τ−3
+ ε, where

τ ∈ (2, 3) is the power-law exponent and ε > 0 (which implies ε < γ < 1/3 + ε). Both bounds also hold
with probability at least 1 − 1/n (independent of ε). The routing scheme is a labeled scheme, requiring a
stretch–5 handshaking step. The scheme uses addresses and message headers with O(logn log logn) bits,
with probability at least 1− o(1). We further demonstrate the effectiveness of our scheme by simulations on
real-world graphs as well as synthetic power-law graphs.

With the same techniques as for the compact routing scheme, we also adapt the approximate distance
oracle by Thorup and Zwick (STOC 2001, J.ACM 2004) for stretch 3 and we obtain a new upper bound of
expected Õ(n1+γ) for space and preprocessing for random power-law graphs. Our distance oracle is the first
one optimized for power-law graphs. Furthermore, we provide a linear-space data structure that can answer
5–approximate distance queries in time at most Õ(n1/4+ε) (similar to γ, the exponent actually depends on
τ and lies between ε and 1/4 + ε).
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1. INTRODUCTION
Message routing and answering shortest-path and distance queries are fundamental
services for communication and information networks. Routing can be seen as the dis-
tributed version of answering a shortest-path query. When answering a distance query
for a pair of nodes in a network, an efficient algorithm accesses only a small fraction
of the information stored at preprocessing time. A preprocessing algorithm, the data
structure it creates, and its corresponding query algorithm that computes (approxi-
mate) shortest distances, are referred to by the term distance oracle. When routing a
message from a source to a destination in the network, to decide where to forward the
message to, a node may only use its local information, which includes its local routing
table, the destination address, and a message header.

Both routing schemes and distance oracles are expected to “produce” (route mes-
sages or output) shortest or approximate shortest paths between all source-destination
pairs along. A key measure for the quality of routing schemes (and distance oracles) is
their worst-case multiplicative stretch, which is defined as the maximum ratio of the
length of the message route between a pair of nodes s and t by the scheme and the
actual shortest path length between s and t, among all s-t pairs in the network.

Routing schemes address the tradeoff between stretch and routing table size. A triv-
ial stretch-1 routing scheme is one in which every node stores for every destination in
the network where to forward the message to. However, for a network with n nodes,
this approach requires unscalable Ω(n log n)-bit routing tables for every node [Gavoille
and Perennes 1996]. A compact routing scheme is only allowed to have routing tables
with sizes sublinear in n and message header sizes polylogarithmic in n. There are
two classes of compact routing schemes: Labeled schemes are allowed to add labels to
node addresses to encode useful information for routing purposes, where each label
has length at most polylogarithmic in n. Name-independent schemes do not allow the
renaming of node addresses, instead they must function with all possible addresses.

1.1. Our Contributions
We bridge the gap between theory and practice in the study of compact routing
schemes and distance oracles for power-law graphs. In a power-law graph (some-
times also termed scale-free network or graph), the number of nodes with degree x
is proportional to x−τ , for some constant τ , often between 2 and 3. Experimental re-
sults [Krioukov et al. 2004] suggest that there are efficient routing schemes for power-
law graphs. We provide the first theoretical analysis that directly links the power-law
exponent τ of a random power-law graph to the bound on the routing table sizes (and
the distance oracle space complexity, respectively).

More specifically, we adapt the labeled universal compact routing scheme of Tho-
rup and Zwick [2001] to optimize it for unweighted, undirected power-law graphs. Our
adaptations include (a) selecting nodes with the largest degrees as the landmarks in-
stead of random sampling, and (b) directly encoding shortest paths in node labels and
message headers instead of relying on a tree routing scheme. The details of the scheme
can be found in Section 4; a detailed comparison with [Thorup and Zwick 2001] is de-
ferred to Section 2.3.

Our complexity analysis (see Section 5) of the routing scheme is based on the random
power-law graph model with expected degree sequence proposed by Aiello, Chung and
Lu [Aiello et al. 2000; Chung and Lu 2002; Chung and Lu 2006; Lu 2002b] with some
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modifications. We assume the power-law exponent τ to lie in the range of (2, 3), which is
the so called “finite mean infinite variance” region of the power-law degree distribution,
where most practical power-law networks are assumed to be in [Clauset et al. 2009,
p. 662].

We prove that for a stretch upper bound of 3 (after a handshaking step with
stretch 5), instead of tables of size Õ(n1/2) shown to be optimal up to a polylogarith-
mic factor for general graphs [Thorup and Zwick 2001], expected sizes of O(nγ log n)
bits are sufficient, and that the routing tables can be constructed at once in expected
time O(n1+γ log n), with γ = τ−2

2τ−3 + ε and ε > 0 (which implies ε < γ < 1/3 + ε).
Both bounds also hold with probability at least 1− 1/n (independent of ε). This means
that for all τ ∈ (2, 3), we have an upper bound of Õ(n1/3+ε) on the routing table sizes,
which is better than the optimal bound of Õ(n1/2) for general graphs. For values of τ
close to 2, for example for τ = 2.1, our bound is O(n1/12+ε). The routing scheme re-
quires a stretch–5 handshaking step, which is similar to DNS lookup in TCP/IP (see
also [Thorup and Zwick 2001, Sec. 4]). Thorup and Zwick also point out that labeled
routing schemes probably require a lookup step anyway and that one stretch–5 step
may be negligible for communication patterns that span several messages. Our scheme
uses addresses and message headers of size O(log n log log n), with probability at least
1 − o(1). The efficient encoding using O(log n log logn) bits in addresses and headers
relies on specific distance properties of power-law graphs. Our scheme is a fixed-port
scheme, meaning that it works for any permutation of port number assignments on
any node.

We provide simulation results for both random power-law graphs and actual router-
level networks, which demonstrate the effectiveness of our adapted compact routing
scheme (Section 6).

Using the same techniques, we also adapt the approximate distance oracle by Tho-
rup and Zwick [2005] for unweighted, undirected power-law graphs (see Section 7
for details). We prove that, for stretch 3, instead of an oracle of size O(n3/2), ex-
pected space O(n1+γ) is sufficient and that the oracle can be constructed in expected
time O(n1+γ log n). Again, both bounds also hold with probability at least 1− 1/n. Fur-
thermore, we provide a linear-space data structure that can answer 5–approximate
distance queries in time at most Õ(n1/4+ε) (similar to γ, the exponent actually depends
on τ and lies between ε and 1/4 + ε).

1.2. Organization
We first outline related work on power-law graphs (Section 2.1), (compact) routing
schemes (Section 2.2), including a detailed comparison with the routing schemes by
Thorup and Zwick (Section 2.3), and approximate distance oracles (Section 2.4). Our
routing scheme and distance oracles are for a certain model of random power-law
graphs, which we define in Section 3. The compact routing scheme for random power-
law graphs is described in Section 4; we analyze its theoretical performance in Sec-
tion 5 and its experimental performance in Section 6. We provide and analyze approx-
imate distance oracles for random power-law graphs in Section 7. We conclude with a
summary and open questions in Section 8.

2. RELATED WORK
2.1. Power-law Graphs
Power-law graphs [Mitzenmacher 2003] constitute an important family of networks
appearing in various real-world scenarios such as social networks and many more
are claimed to be power-law graphs [Clauset et al. 2009; Faloutsos et al. 1999], some-
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times rather controversially [Achlioptas et al. 2009; Roughan et al. 2011]. In a power-
law graph, the number of nodes with degree x is proportional to x−τ , for some con-
stant τ . The power-law exponent τ for many real-world networks is in the range be-
tween 2 and 3 [Krioukov et al. 2004, Sec. I.B]. Power-law graphs do not seem to be-
long to any of the well-studied network families such as trees, planar graphs or low-
doubling-dimension graphs (see Section 2 for details). Despite their unique features,
power-law graphs are actually not “easy” instances for algorithms. Although power-law
graphs are sparse, optimization problems remain hard: problems such as COLORING
or CLIQUE are NP-hard for power-law graphs as well [Ferrante et al. 2008].

Besides the random power-law graph model of Aiello, Chung, and Lu [Aiello et al.
2000; Chung and Lu 2002; Chung and Lu 2006; Lu 2002b], other mathematical
models for power-law graphs include the configuration model [Newman et al. 2001],
the Poissonian process [Norros and Reittu 2006], and the preferential attachment
model [Barabási and Albert 1999; Kumar et al. 2000]. Among these, the random power-
law graph model is studied very well, providing a rich body of mathematical results.
Furthermore, recent empirical studies on compact routing also use this model [Brady
and Cowen 2006; Krioukov et al. 2004].

2.2. (Compact) Routing Schemes
Both labeled and name-independent compact routing schemes have been studied ex-
tensively. Universal schemes work for all network topologies [Abraham et al. 2006b;
Abraham et al. 2006c; Abraham et al. 2008; Cowen 2001; Peleg and Upfal 1989; Tho-
rup and Zwick 2001]. It has been shown that with Õ(n1/k)-bit routing tables (as usual,
we abbreviate O(f(n) · logt n) for some constant t by Õ(f(n))) one can achieve a stretch
of O(k), and that this tradeoff is essentially tight due to a girth conjecture by Erdős.

Due to these impeding lower bounds for general graphs, specialized schemes were
designed for various families of network topologies, including trees [Fraigniaud and
Gavoille 2001; Korman 2008; Thorup and Zwick 2001], planar graphs [Gavoille and
Hanusse 1999; Lu 2002a], fixed-minor-free graphs [Abraham et al. 2005], or graphs
with low doubling dimension [Abraham et al. 2006a; Konjevod et al. 2006; Konjevod
et al. 2007]. These topology-specific schemes achieve significant improvements on the
stretch–space tradeoff over universal routing schemes.

Despite their potential relevance in practice, the family of power-law graphs has
not received much attention from the routing research community. There are exper-
imental studies of compact routing in power-law graphs and Internet-like graphs.
Krioukov et al. [2004] evaluate the universal routing scheme of Thorup and Zwick
(TZ) [2001] on random power-law graphs [Aiello et al. 2000] and provide experimental
evidence of much better performance (both in terms of stretch and table sizes) than
the theoretical worst-case bound. However, they do not provide a analytical bound of
the TZ scheme on power-law graphs for neither stretch nor table size. Enahescu et
al. [2008] propose a greedy landmark selection scheme and they show empirically that
their adaptation achieves good stretch and table sizes for power-law graphs and In-
ternet Autonomous System (AS) graphs. Unfortunately, their theoretical analysis is
for Erdős-Rényi random graphs [Erdős and Rényi 1960] instead of power-law graphs.
Brady and Cowen [2006] give a compact routing scheme tailored for power-law graphs
with additive stretch d and header and table sizes O(e log2 n), where both d and e de-
pend on the graph, and they show experimentally that these values are reasonably
small for certain random power-law graphs [Aiello et al. 2000]. However, there is no
rigorous analysis connecting d and e to the parameter τ of power-law graphs.

Embedding power-law graphs into hyperbolic spaces and using the coordinates ap-
pears to be a promising approach for routing in power-law graphs [Cvetkovski and
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Crovella 2009; Papadopoulos et al. 2010]. However, current approaches do not offer
any guarantees on the worst-case stretch and, furthermore, both success probability
and stretch have only been evaluated experimentally so far.

2.3. Detailed Comparison with Existing Routing Schemes
Thorup and Zwick’s routing schemes. We first provide additional details on the com-

parison with Thorup and Zwick’s routing schemes.
Thorup and Zwick [2001] contribute two different routing schemes. Their first

scheme is a stretch–3 scheme with an O(n1/2 log3/2 n)-bit routing table per node and
O(log n)-bit labels and headers. This scheme is based on Cowen’s earlier scheme [2001],
which uses a small subset A of nodes, called landmarks, to route messages. In a
graph G = (V,E) with landmark set A ⊆ V , for every node u, define its cluster
C(u) = {v ∈ V : d(v, u) < d(v,A)}, where d(v, u) and d(v,A) denote the graph dis-
tance from v to u and A, respectively. Let `(u) denote the landmark in A that is the
closest to node u (ties are resolved arbitrarily). The routing table of node u stores
the port identifiers to route messages to all nodes in A and C(u). If a destination v
is not in A ∪ C(u), u routes through `(v), which guarantees a stretch bound of 3 due
to the definition of the cluster C(u). Thorup and Zwick use a resampling method to
achieve |A ∪ C(u)| = O(n1/2 log1/2 n) for every node u. It may be tempting to adapt TZ’s
first scheme (as described above) for random power-law graphs. Our analysis, however,
breaks down due to dependency issues (see Section 5.7 for more details).

The second scheme of Thorup and Zwick [2001] is based on their approximate
distance oracle [Thorup and Zwick 2005]. For any k ≥ 2, they design a com-
pact routing scheme with Õ(n1/k)-bit tables, O(k log2 n/ log log n)-bit addresses, and
O(log2 n/ log log n)-bit headers (the bounds on addresses and headers are for fixed-port
schemes). The scheme achieves stretch 2k − 1 with a stretch 4k − 5 handshake. For
the case of k = 2 (comparable to our scheme), their scheme essentially considers the
landmark set A together with the ball of a node u, B(u) = {v : d(v, u) < d(u,A)}. Note
that balls and clusters are dual concepts: v ∈ C(u) if and only if u ∈ B(v). The routing
table of u stores the ports to route messages to all nodes in A ∪ B(u). Similar to the
first scheme, when v 6∈ A ∪ B(u), u routes through `(v) to reach v, but in this case it
only guarantees a stretch of 5 instead of 3 when v 6∈ B(u) but u ∈ B(v). A handshake is
needed to reduce the stretch to 3. Moreover, a node w on the path from `(v) to v may not
know the port to route to v from its routing table, since v may not be in B(w) (though
v ∈ C(w)). To resolve this issue, Thorup and Zwick further use a tree routing scheme,
which requires additional, rather complicated labels. They use random sampling to
guarantee that |A ∪B(u)| = Õ(n1/2).

Our scheme is similar to their second scheme. We also use balls and landmarks
to route messages. There are two major differences: First, we use high-degree nodes
instead of randomly selected nodes as landmarks. The major contribution of the paper
is to prove that, with this selection strategy, in random power-law graphs, we achieve
|A ∪B(u)| = O(nγ) with γ = τ−2

2τ−3 + ε and ε > 0, which holds both in expectation
and with high probability. Second, instead of using a tree routing scheme, we directly
encode the shortest path from `(v) to v in v’s address, which is short (with probability
1 − o(1)) due to the distance properties in random power-law graphs. As a result, our
routing table sizes are smaller than the tables in both TZ schemes, and our address
and header size of O(log n log log n) is better than TZ’s second scheme and close to TZ’s
first scheme. Our scheme is also simpler than the second scheme and is comparable
with the first scheme. This improvement is possible only by tailoring the scheme to
unweighted power-law graphs.
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Probabilistic guarantees. Recently, there have been compact routing schemes with
probabilistic guarantees. Since for our scheme also some properties also hold with high
probability, let us briefly describe the differences to existing schemes. Routing schemes
by Dinitz [2007] can efficiently find short routes for most pairs, there is however some
slack, meaning that for some pairs the route may be longer. In our work, the bound
on the stretch is for the worst-case pair (s, t) ∈ V × V . In the Dinitz scheme, the slack
is with respect to the stretch: for some pairs (constant fraction) the stretch inequali-
ties do not necessarily hold. In our work, the bound on the table size holds with high
probability (1 − 1/n). Our construction is deterministic but analyzed in an average-
case manner for a specific class of random graphs. The Thorup-Zwick construction is
randomized and works for any graph. Hence, we both obtain a bound on the table size
with high probability.

2.4. Distance Oracles
Dijkstra’s algorithm [1959] finds a shortest path in any graph with non-negative edge
weights in time O(n log n+m), where n and m denote the number of nodes and edges,
respectively. For applications such as navigation software exploring huge maps or for
social networking sites, this query time is not practical. Instead, the graph is prepro-
cessed and a special data structure allows for efficient queries. One way to prepare
for queries is to precompute all shortest paths using an All-Pairs Shortest Path algo-
rithm [Chan 2007] and to read a shortest path from a distance table. Time and memory
constraints, however, render this approach impractical. Instead of running a cubic-
time algorithm and using quadratic storage, we want to efficiently preprocess a graph
to allow for fast distance queries. However, for general (directed) graphs with n ver-
tices, Ω(n2) space is necessary to return the shortest distance. Approximate distance
oracles address the trade-off between approximation ratio, space, and preprocessing
and query time, and can thus be interpreted as a generalization of the All-Pairs (Ap-
proximate) Shortest Path problem. In the following, we list approaches tailored for
complex networks. For recent surveys we refer to [Sen 2009; Sommer 2010].

Thorup and Zwick [2005] provide a stretch–(2k−1) distance oracle of size Õ(kn1+1/k),
which can be constructed in time O(kmn1/k). Assuming a girth conjecture by Erdős,
stretch and size are asymptotically tight for small values of k. For stretch parameter
k = 2, the distance oracle of Thorup and Zwick has the following worst-case perfor-
mance: the size is O(n3/2) and the stretch is 3. Fortunately, the theoretical worst-case
stretch bounds of Thorup and Zwick’s distance oracle [2005] (and, also, of their routing
scheme [Thorup and Zwick 2001]) are not observed in experiments [Krioukov et al.
2004], even though they are tight.

Distance oracles and shortest-path queries for complex networks have been stud-
ied experimentally. Potamias et al. [2009] use landmark-based A* search [Goldberg
and Harrelson 2005]. Das Sarma et al. [2010] provide a practical implementation of
Bourgain’s embedding [1985], and they propose an extension of the distance oracle by
Thorup and Zwick [2005]. In their extension, they omit ball computations. While the
asymptotic performance is not affected, their algorithms both for preprocessing and
query are simpler and potentially faster in practice than the corresponding original
algorithms. The stretch bounds, however, only hold with high probability. Cheng and
Yu [2009] use 2–hop labels [Cohen et al. 2003] to efficiently compute exact distances.
Xiao et al. [2009] compress graphs by exploiting symmetries. Instead of treating ver-
tices as a single unit, they work on orbits of automorphism groups. Shortest-path
queries are answered using compact BFS-trees, which are based on these orbits. Sym-
metries in complex networks seem to be very common. Experiments show that their
method may be very efficient; the running time of the preprocessing algorithm appears
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to be roughly quadratic in the number of nodes. Goldman et al. [1998] consider rela-
tionships among objects in large databases. Their method processes keyword searches
over databases in interactive query sessions. Distances between objects are computed
based on a compact index, which consists of local neighborhoods and distances to hub
vertices (separators). Hubs are chosen as high-degree nodes.

Although complex networks seem to be rather common in practice, to the best of our
knowledge, there is no distance oracle with provable guarantees better than those of
the general distance oracle of Thorup and Zwick [2005].

3. PRELIMINARIES
We adapt the random graph model for fixed expected degree sequence as defined by
Aiello, Chung, and Lu [Aiello et al. 2000; Chung and Lu 2002; Lu 2002b; Chung and
Lu 2006] using the definition from [Chung and Lu 2002, Section 2]. We refer to the
original random graph distribution using the expression Fixed Degree Random Graph
(FDRG).

Definition 3.1 (Fixed Degree Random Graph [Chung and Lu 2002, Section 2]). In
a random graph with a given expected degree sequence ~w = {w1, w2, . . . , wn} such that
∀i : w2

i <
∑
j wj , the edge between vi and vi′ is present in the random graph with

probability

Pr [{vi, vi′} ∈ E] = wiwi′ρ, where ρ =
1∑
j wj

.

In the original FDRG model it is assumed that ∀i, i′ : wiwi′ <
∑
j wj . We adapt the

original model by deterministically inserting edges if wiwi′ >
∑
j wj . Without modifi-

cation, the original assumption would rule out the values for τ considered in this work.

Definition 3.2. For a constant τ ∈ (2, 3), the random power-law graph distribu-
tion RPLG(n, τ) is defined as follows. Let the sequence of generating parameters
~w = {w1, w2, . . . , wn} obey a power law:

wj =
(
n

j

)1/(τ−1)

for j ∈ {1, 2, . . . n}.

The edge between vi and vi′ is present in the random graph with probability

Pr [{vi, vi′} ∈ E] = min{wiwi′ρ, 1}, where ρ =
1∑
j wj

.

Note that, in both models, there is a one-to-one correspondence between a node vj
and its generating parameter wj . In the FDRG model, the value wj corresponds to
the expected degree of vertex vj , and Chung and Lu refer to ~w as the expected degree
sequence. In the RPLG(n, τ) adaptation, the graph is sampled according to the gen-
erating parameter values wj . Let Dj be the random variable denoting the degree of
node vj . In the RPLG(n, τ) model, the expected degree E[Dj ] of node vj is less than or
equal to the generating parameter wj . We refer to the edges between two nodes vi, vi′
with wiwi′ ≥

∑
j wj as deterministic edges; we refer to the remaining edges as random

edges.
An important technical reason to work with the model of Aiello, Chung, and

Lu [Aiello et al. 2000; Chung and Lu 2002; Lu 2002b; Chung and Lu 2006] is that
the edges are independent. This independence makes several graph properties easier
to analyze. We also (implicitly) rely on a property called assortativity. Assortativity
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is the tendency of nodes with high degree to attach to other highly connected nodes.
This tendency is especially high in social networks. The opposite tendency, termed dis-
sortativity, is more common in technological and biological networks, wherein highly
connected nodes tend to be connected with low-degree nodes. Intuitively speaking, the
property we rely on is that a node with high degree is either in the so-called core (as
defined below) or, with high probability, at least one of its neighbors is in the core. Li et
al. [2005, Definition 4.1] formalize assortativity as follows. They define the s(G) value
of a graph as s(G) :=

∑
{vi,vi′}∈E

deg(vi) · deg(vi′). Graphs sampled from the FDRG
model tend to have a high s(G) value, since high-degree nodes are attached to other
highly connected nodes. Li et al. state that s(G) measures to what extent a graph has
a “hub-like core.” The core of a graph consists of nodes having large degrees.

Let γ = τ−2
2τ−3 + ε for some ε > 0 and γ′ = 1−γ

τ−1 . We require that n = |V (G)| is
sufficiently large, specifically, that

n
ε(2τ−3)
τ−1 ≥ 2(τ − 1)

τ − 2
lnn. (1)

Our results do not have any other implicit dependencies on ε.

Definition 3.3. For a power-law degree sequence ~w and a graph G with n nodes, the
core with degree threshold nγ

′
, γ′ ∈ (0, 1), is defined as follows.

coreγ′(~w) := {vi : wi > nγ
′
},

coreγ′(G) := {vi : degG(vi) > nγ
′
/4},

where degG(vi) is the degree of vi in G (the subscript G is omitted when the graph is
clear from the context).

Our coreγ′(~w) is the nγ
′
-Core in [Lu 2002b, Chapter 4, Definition 2].

For each vertex u of a graph G, we define its ball relative to the core as

BG(u) := {v ∈ V (G) : d(u, v) < min
v′∈coreγ′ (G)

d(u, v′)}.

4. THE ADAPTED COMPACT ROUTING SCHEME
Let the unweighted graph G = (V,E) model the network. Each node v in the network
has a unique dlog2 ne-bit static name. Whenever we write v in a routing table, a mes-
sage header, or a node address, we mean its dlog2 ne-bit static name representation.
Each node v has deg(v) ports connecting it with its neighbors. These ports are num-
bered by 0, 1, . . . ,deg(v)−1, and identifying each port number of v requires dlog2 deg(v)e
bits. For every packet, the routing scheme needs to decide which port the packet is to
be forwarded to. Our scheme is a fixed-port scheme, that is, it works with arbitrary
permutations of port number assignments.

4.1. Routing Scheme
The routing algorithm is inspired by and based on [Cowen 2001; Thorup and Zwick
2001]. We also use a set of landmarks A ⊆ V , but different from [Cowen 2001; Tho-
rup and Zwick 2001], we use coreγ′(G) as landmarks instead of nodes sampled at
random. For each node u in G, let `(u) denote u’s closest landmark, that is, `(u) :=
arg minv∈coreγ′ (G) d(u, v). The local targets of node u are defined as the elements of its
ball BG(u). Similar to the second scheme in [Thorup and Zwick 2001], each node u
stores the ports to route messages along the shortest paths to all landmarks and to its
local targets. If the target v is neither a landmark nor a local target of u, the message
is routed to v’s closest landmark `(v) and from there to the target v.
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The scheme is a labeled scheme. For a node u to know `(v) of any target v, the address
of node v contains an encoding of `(v). Moreover, for a node w on the shortest path from
`(v) to v (w 6= `(v) and w 6= v), v may not be in BG(w) and thus w may not know the
port to route messages to v. To resolve this issue, we further extend the address of v
by encoding the shortest path from the landmark `(v) to v.

Let (s = u0, u1, . . . , um = t) denote the sequence of nodes on a shortest path from
s to t. Let SP (s, t) be the encoding of this shortest path as an array with m entries,
wherein SP (s, t)[i] denotes the port to route from ui to ui+1 for all i = 0, 1, . . . ,m − 1.
Thus SP (s, t) can be encoded with

∑m−1
i=0 log2ddeg(ui)e bits. We now provide the precise

definitions of addresses, message headers, and local routing tables.

Definition 4.1.

— The address of node u ∈ V is addr(u) := (u, `(u), SP (`(u), u)).
— The header of a message from node s to node t is in one of the following formats:

(1) header = (route, s, t), where route = local,
(2) header = (route, s, addr), where route = toLandmark and addr = addr(t),
(3) header = (route, s, t, pos, SP ), where route ∈ {fromLandmark, direct}, pos is a

non-negative integer that may be modified along the route, and SP = SP (s, t) if
route = direct or SP = SP (`(t), t) if route = fromLandmark,

(4) header = (route, s, t, SP ), where route = handshake and SP is a reversed shortest
path from t to s to be encoded along the path from s to t.

— The local routing table for each node u consists of the information about routes to the
core and the information about local routes:

tbl(u) := {(v, portu(v)) : v ∈ coreγ′(G)} ∪ {(v, portu(v)) : v ∈ BG(u)},
where portu(v) is the local port of u to route messages towards node v along some
shortest path from u to v.

The routing procedure for the source is described in Algorithm 1, based on whether
t is local or not and whether a shortest path to t is known due to an earlier handshake
or not.

ALGORITHM 1: Sending a message using LANDMARKBALLROUTING, source s, target t 6= s.
1: if t ∈ BG(s) then
2: send packet with header = (local, s, t) using ports(t) stored in tbl(s)
3: else if s stored SP (s, t) after a handshake then
4: send packet with header = (direct, s, t, 0, SP (s, t)) using port SP (s, t)[0]
5: else
6: send packet with header = (toLandmark, s, addr(t)) using ports(`(t)) stored in tbl(s)
7: end if

The forwarding procedure is described in Algorithm 2, listing pseudocode for an in-
termediate node u to determine whether to forward the message using its local routing
table (Lines 9 and 15), or to forward the message using the shortest path encoded in
the header (Lines 11–13), or to switch the routing direction from towards the landmark
`(t) to towards the target t (Lines 5–7).

The correctness of the algorithm is based on the simple observation that if t ∈
BG(s) ∪ coreγ′(G) (and thus t is in the routing table of s), then, for all nodes w on
the shortest path from s to t, we also have t ∈ BG(w) ∪ coreγ′(G).

An additional handshake protocol (Algorithm 3) handles the special case when t 6∈
BG(s) but s ∈ BG(t). In this case, the basic LANDMARKBALLROUTING scheme only
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ALGORITHM 2: Forwarding a message at node u using LANDMARKBALLROUTING. Message
from source s to target t 6= s with header header.
1: if u = header.t then
2: exit as the packet arrived.
3: end if
4: if header.route = toLandmark then
5: if u = header.addr.`(t) then
6: header.route← fromLandmark; header.pos← 0; header.SP ← header.addr.SP (`(t), t);
7: forward packet with the new header using port header.SP [0]
8: else
9: forward the packet to portu(header.addr.`(t)) stored in tbl(u)
10: end if
11: else if header.route ∈ {fromLandmark, direct} then
12: header.pos← header.pos+ 1
13: forward the packet using port header.SP [header.pos]
14: else if header.route = local then
15: forward the packet using portu(header.t) stored in tbl(u)
16: end if

achieves worst-case stretch 5 instead of 3. However, t knows the reverse path from t
to s. Since the graph is undirected, t can send a special handshake message back to s
(Line 2), and each node along the path encodes the reverse port number such that, in
the end, s knows the shortest path from s to t (Lines 3–10). For simplicity of exposition
we use the reasonable assumption [Abraham et al. 2006b] that node u knows the port q
on which the message is received. If this assumption does not hold, our handshake
protocol can be adapted accordingly as follows. In the routing table of a node u, for all
v ∈ BG(u) ∪ coreγ′(G), we also store a rev-portu(v) = portw(u), where w is the first
node on the path from u to v. Then, when forwarding the handshake message from t
to s, every node u on the path (including t) prepends rev-portu(s) to the SP in the
header. This increases the routing table size by at most dlog2 ne bits per entry. Note
that, in Algorithm 3, we also include the case of s ∈ coreγ′(G) (see Line 1), in which
case the stretch is improved from 3 to 1. The performance of Algorithms 2 and 3 is
evaluated in the following theorem, which is proven in the next section.

ALGORITHM 3: Handshake protocol on node u upon the receipt of a packet from a port q with
header header.
1: if header.route = fromLandmark and u = header.t and header.s ∈ BG(u) ∪ coreγ′(G) then
2: send packet with header = (handshake, u, header.s,Nil) using portu(header.s) stored in

tbl(u).
3: else if header.route = handshake then
4: header.SP = q · header.SP /* prepend the port q as part of the reverse path */
5: if header.t = u /* reach handshake destination */ then
6: store SP (u, header.s) = header.SP locally for later use (see Line 3 of

LANDMARKBALLROUTING.)
7: else
8: forward packet with the new header to portu(header.t) stored in tbl(u).
9: end if
10: end if

THEOREM 4.2. LANDMARKBALLROUTING together with the handshake protocol is
a routing scheme with the following properties:
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— the worst-case stretch is 5 without handshaking,
— the worst-case stretch is 3 after handshaking, and
— every routing decision takes constant time.

Let γ = τ−2
2τ−3 + ε be a constant. Assume Equation (1) is satisfied. For random graphs

sampled from RPLG(n, τ) with n sufficiently large, LANDMARKBALLROUTING has the
following performance properties:

— the expected maximum table size isO(nγ log n) bits (not taking into account additional
information stored after handshaking); this bound also holds with probability at least
1− 1/n,

— address length and message header size are O(log n log log n) bits with probability
1− o(1), and

— addresses and routing tables can be generated efficiently in expected time
O(n1+γ log n) and this bound also holds with probability at least 1− 1/n.

5. ANALYSIS OF THE COMPACT ROUTING SCHEME
In this section, we analyze the performance of LANDMARKBALLROUTING for random
power-law graphs.

5.1. Stretch
The proofs use the triangle inequality as in [Cowen 2001; Thorup and Zwick 2001].

LEMMA 5.1. LANDMARKBALLROUTING has worst-case stretch 5. After handshak-
ing with stretch 5, LANDMARKBALLROUTING has worst-case stretch 3.

PROOF. By the triangle inequality [Cowen 2001], it is easy to verify the worst-
case stretch 3 after handshaking. Before handshaking, the worse-case stretch happens
when t /∈ BG(s) and s ∈ BG(t). It holds that d(s, t) ≥ d(s, `(s)). The radius of t’s ball is at
most d(t, `(t)) ≤ d(t, `(s)) ≤ d(`(s), s) + d(s, t). Also, the distance from s to t’s landmark
is at most d(s, `(t)) ≤ d(s, t) + d(t, `(t)). This results in a total path length of at most

d(s, `(t)) + d(`(t), t) ≤ d(s, t) + 2d(t, `(t)) ≤ d(s, t) + 2(d(`(s), s) + d(s, t)) ≤ 5d(s, t).

5.2. Random Power-Law Graphs and their Cores and Balls
We first prove some properties of the adapted random power-law graph model. Let
G be a random graph sampled from RPLG(n, τ). For a set of nodes S, define its vol-
ume Vol(S) as the sum of all its nodes’ wi, that is, Vol(S) :=

∑
vi∈S wi. We abbreviate

Vol(G) = Vol(V (G)). Note that Vol(G) = 1/ρ. Let vol(S) denote the sum of the nodes’
degrees in the actual graph G, vol(S) :=

∑
vi∈S degG(vi). The following lemma proves

that Vol(G) is linear in n.

LEMMA 5.2. LetG be a random graph sampled from RPLG(n, τ) with n sufficiently
large. The volume Vol(G) satisfies

n < Vol(G) ≤ τ − 1
τ − 2

n.

PROOF. Lower bound: it holds that
∑
k wk > n, as ∀k < n : wk > 1 and wn = 1.

Upper bound: it holds that

Vol(G) =
n∑
k=1

wk < w1 +

n∫
1

(n
x

)1/(τ−1)

dx ≤ τ − 1
τ − 2

n.
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In the following, we show concentration results for the actual degree of a vertex and
for the volume of a set of vertices in the adapted RPLG(n, τ) model. We also restate
the corresponding results in the original FDRG model. The basic idea to prove the
results for the RPLG(n, τ) model is to split the random variable for the degree Di of
node vi into deterministic and random edges and then bound both parts individually.

LEMMA 5.3 ([CHUNG AND LU 2006, LEMMA 5.6][MCDIARMID 1998, THEOREM 2.7]).
For a random graph sampled from FDRG(~w), the random variable Di measuring the

degree of vertex vi is concentrated around its expectation wi as follows:

Pr[Di > wi − c
√
wi] ≥ 1− e−c

2/2 (2)

Pr[Di < wi + c
√
wi] ≥ 1− e−

c2
2(1+c/(3√wi)) (3)

LEMMA 5.4 ([CHUNG AND LU 2006, LEMMA 5.9]). For a random graph sampled
from FDRG(~w), for a subset of vertices S and for all 0 < c ≤

√
Vol(S),

Pr[|vol(S)−Vol(S)| < c
√

Vol(S)] ≥ 1− 2e−c
2/6.

LEMMA 5.5. For a random graph sampled from RPLG(n, τ) with n sufficiently
large, if wi ≥ 32 lnn, for vertex vi, the degree Di satisfies the following: Pr[wi/4 ≤ Di ≤
3wi] > 1− 2/n4.

PROOF. Recall that ρ = 1/Vol(G) < 1/n (by Lemma 5.2). For 1 ≤ i ≤ n, let
h(i) ∈ [1, n] denote the smallest integer such that ρwh(i)wi ≤ 1. Consider h(1). Since
ρw1( n

n3−τ )1/(τ−1) ≤ 1, we have that h(1) ≤ dn3−τe. Therefore, for all 1 ≤ i ≤ n,
h(i) ≤ h(1) ≤ dn3−τe.

We split the degree Di into two parts: the contribution by edges to nodes vj with
j < h(i) and the contribution stemming from edges to nodes vj with j ≥ h(i). When
h(i) ≥ 1, there are at least h(i) − 1 edges to nodes vj with j ≤ h(i). Now consider the
edges between vi and vj for j ≥ h(i). Since the sequence ~w is monotonically decreasing,

and since n3−τ ≥ 1 and n ≥ 4
τ−1

(τ−2)2 ,
n∑

j=h(i)

wj ≥
n∫

n3−τ+1

(n/x)1/(τ−1)dx

≥ τ − 1
τ − 2

(n− n1/(τ−1)2
τ−2
τ−1n

τ−2
τ−1 (3−τ))

≥ τ − 1
2(τ − 2)

n.

Recall that ρ = 1/
∑n
i=1 wi ≥

τ−2
n(τ−1) by Lemma 5.2. Let D′i be the random variable

denoting the number of edges from vi to vj with j ≥ h(i) in a random graph. Thus,
E[D′i] = µ = ρwi

∑n
j=h(i) wi ≥ wi/2 ≥ 16 lnn. Also µ ≤ wi. Since there are no determin-

istic edges in this case, the random variable D′i can be bounded using Lemma 5.3:

Pr[D′i > µ/2] ≥ 1− e−µ/4 ≥ 1− 1/n4,

Pr[D′i < 2µ] ≥ 1− e−3µ/8 ≥ 1− 1/n4.

If h(i) = 1, the lemma follows directly. If h(i) > 1, we have Di ≤ D′i + h(i)− 1. Notice
that ρwi(n/wi)1/(τ−1) ≤ 1, which implies that h(i) ≤ dwie ≤ wi + 1. Therefore,

Pr[wi/4 ≤ µ/2 ≤ Di ≤ 3wi] ≤ 1− 2/n4.
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LEMMA 5.6. LetG be a random graph sampled from RPLG(n, τ) with n sufficiently
large. For a subset of vertices S satisfying Vol(S) ≥ 192 lnn, it holds with probability at
least 1− 2/n3 that Vol(S)/8 ≤ vol(S) ≤ 4Vol(S).

PROOF. We split S into two parts. Nodes vi with small wi, S1 := {vi ∈ S : wi <
32 lnn}, and nodes vi with large wi, S2 = S\S1. By Lemma 5.5, Pr[Vol(S2)/4 ≤ vol(S2) ≤
3Vol(S2)] ≥ 1− 2 |S2| /n4.

As for each vertex vi ∈ S1, wi < 32 lnn, we can apply Lemma 5.4 to S1, since no
deterministic edges are attached to S1. Therefore, if Vol(S1) ≥ 96 lnn, by Lemma 5.4,
Pr[Vol(S1)/2 ≤ vol(S1) ≤ 2Vol(S1)/3] ≥ 1 − 2/n4. Therefore, the statement holds with
probability at least 1− 2(|S2|+ 1)/n4 ≥ 1− 2/n3.

If Vol(S1) < 96 lnn, we have Vol(S2) ≥ Vol(S)/2 ≥ 96 lnn. Nevertheless, we can still
apply Lemma 5.4 to bound vol(S1) from above as Pr[vol(S1) < 3

2 ·96 lnn ≤ 3
4Vol(S)] ≥ 1−

2/n4. In this case, since Pr[Vol(S)/8 ≤ Vol(S2)/4 ≤ vol(S2) ≤ 3Vol(S2)] ≥ 1− 2 |S2| /n4,
the statement also holds with probability at least 1− 2/n3.

COROLLARY 5.7. The number of edges of a random graph sampled from
RPLG(n, τ) with n sufficiently large is at most vol(G)/2 ≤ 4(τ−1)

τ−2 n with probability
at least 1− 1/n2.

There is an edge between two nodes vi, vj with probability proportional to wi and wj .
This is generalized for sets of nodes S, T ⊆ V (G) in the following and holds for both
FDRG(~w) and RPLG(n, τ).

LEMMA 5.8 ([CHUNG AND LU 2002, LEMMA 3.3], PROOF IN [LU 2002B, LEMMA 9]).
For any two disjoint subsets S and T with Vol(S) ·Vol(T ) > c ·Vol(G), we have

Pr[d(S, T ) > 1] =
∏

vi∈S,vj∈T
max{0, (1− wiwj/Vol(G))} ≤ e−V ol(S)·V ol(T )/V ol(G) ≤ e−c.

5.3. Core Size
To compute the size of coreγ′(~w), we solve the inequality wk > nγ

′
and obtain k.

wk =
(n
k

) 1
τ−1

> nγ
′
⇔ k−

1
τ−1 > nγ

′− 1
τ−1

⇔ k < n(1−τ)(γ′− 1
τ−1 ) = nγ

′(1−τ)+1

As γ′ = 1−γ
τ−1 , we have |coreγ′(~w)| = dnγ′(1−τ)+1e − 1 = dnγe − 1.

Even if the same degree threshold nγ
′

is used for coreγ′(~w) and coreγ′(G), the two sets
of nodes may differ. For a slightly smaller degree threshold nγ

′
/4 (as in Definition 3.3),

the core of the actual graph contains coreγ′(~w) with high probability (apply Lemma 5.5).

LEMMA 5.9. LetG be a random graph sampled from RPLG(n, τ) with n sufficiently
large. With probability at least 1− 1/n2 it holds that coreγ′(~w) = {vi : wi > nγ

′} ⊆ {vi :
deg(vi) > nγ

′
/4} = coreγ′(G).

PROOF. Let vi be a vertex in coreγ′(~w). By Lemma 5.5, Di ≥ nγ
′
/4 with probability

at least 1 − 2/n4. This holds for all j ≤ i. Therefore, by union bound, the probability
that coreγ′(~w) ⊆ {vi : deg(vi) > nγ

′
/4} is at least 1− 1/n2.

LEMMA 5.10. Let G be a random graph sampled from RPLG(n, τ) with n suffi-
ciently large. With probability at least 1− 1/n2, |coreγ′(G)| = Θ(nγ).
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PROOF. Since coreγ′(G) contains coreγ′(~w) with high probability (1 − 1/n2), its size
is at least nγ with high probability.

Let i = 144nγ . By Lemma 5.5, Di ≤ 3wi < nγ
′
/4 with probability at least 1 − 2/n4.

This holds for all j ∈ (i, n]. By union bound, coreγ′(G) does not contain any vertex vj
for i ≤ j ≤ n, with probability at least 1− 1/n2, which implies |coreγ′(G)| ≤ 144nγ with
probability at least 1− 1/n2.

5.4. Ball Sizes
Let G be a random graph sampled from random power-law graph. Recall that a ball is
defined by

BG(u) = {v ∈ V (G) : d(u, v) < min
v′∈coreγ′ (G)

d(u, v′)}.

LEMMA 5.11. Let β = γ′(τ − 2) + (2τ−3)ε
τ−1 be a constant. Assume Equation (1) is

satisfied. For a random graph G sampled from RPLG(n, τ), with probability at least
1− 3/n2, it holds that for all u ∈ V (G),

|BG(u)| = |{u′ ∈ V (G) : d(u, u′) < d(u, coreγ′(~w))}| = O(nβ),

|E(BG(u))| = O(nβ log n),

where E(BG(u)) is the set of internal edges among vertices in BG(u).

Since for RPLG(n, τ) the edges are independent, in our analysis, the existence of
every edge in random graph G is only determined when it is needed, and before that it
is treated as a probability distribution as defined in our random graph model. We call
the determination of the existence of an edge according to its probability distribution
revealing the edge.

For a given vertex u ∈ V (G), we define a sequence of balls (B0 = {u}, B1, B2, . . .) as
follows: Let V ′ = V \ coreγ′(~w). Now define B0 = {u} and Bi = {v : dG(u, v) ≤ i}. We
also define the circles Ci = Bi \ Bi−1 for i ≥ 0 with B−1 = ∅. Let Ei be the number of
edges between Ci and Ci ∪ Ci+1. We first give a concentration result on Ei.

LEMMA 5.12. For circle Ci, the following holds with probability at least 1− 2/n3:
If Vol(Ci) < 192 lnn, then Ei ≤ 4 · 192 lnn, and
if Vol(Ci) ≥ 192 lnn, then Ei ≤ 4Vol(Ci).

PROOF. For our analysis, we assume that the edges of the random graph are re-
vealed in consecutive steps as follows: in step i with i ≥ 0, edges from Ci to V ′ \ Bi−1

are revealed and circle Ci+1 is formed. In other words, when discovering Ci, the edges
between Ci and V ′′ = V ′ \Bi−1 have not been revealed yet.

In particular, Ei measures the number of edges between Ci and V ′′ under the con-
dition that we know all edges adjacent to Bi−1. We can define another random graph
G′ on the vertex set V ′′, such that the edge between two vertices in V ′′ is sampled
with the same probability as in RPLG(n, τ). Clearly, Ei and volG′(Ci) have the same
distribution, where volG′(Ci) denotes the number of edges adjacent to Ci in G′.

Let vol(Ci) denote the random variable measuring the number of edges adjacent
to Ci in the original model FDRG. volG′(Ci) is stochastically dominated by vol(Ci).
Hence, the lemma directly follows since it applies to vol(Ci) by Lemma 5.6.

Since there are at most n circles, Lemma 5.12 holds for all circles with probability at
least 1− 2/n2. We are now ready to prove Lemma 5.11.

PROOF OF LEMMA 5.11. Let k be the smallest integer such that Vol(Bk) ≥ nβ .
We have the conditions Vol(Bk) ≥ nβ , Vol(coreγ′(~w)) ≥ |coreγ′(~w)|nγ′ = nγ+γ

′
, and
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Vol(G) ≤ τ−1
τ−2n (Lemma 5.2). From Equation (1), nβ−γ

′(τ−2) > 2 τ−1
τ−2 lnn. Since the

edges between Bk and coreγ′(~w) have not been revealed, Lemma 5.8 can be applied.
Due to Lemma 5.8, there is an edge between Bk and coreγ′(~w) with probability at least
1− 1/n2.

β = γ′(τ − 2) +
(2τ − 3)ε
τ − 1

γ′ =
1− γ
τ − 1

γ =
τ − 2
2τ − 3

+ ε

V ol(Bk) ≥ nβ

V ol(coreγ′(~w)) ≥ |coreγ′(~w)|nγ
′

= nγ+γ
′

V ol(Bk) · V ol(coreγ′(~w)) ≥ nβ · nγ+γ
′

= nγ
′(τ−2)+

(2τ−3)ε
τ−1 +γ+γ′

= nγ
′(τ−1)+

(2τ−3)ε
τ−1 +γ

= n1+
(2τ−3)ε
τ−1 next, apply Equation (1)

≥ n · 2(τ − 1)
τ − 2

2 lnn next, apply Lemma 5.2

≥ V ol(G) · 2 lnn.

Recall that coreγ′(~w) ⊆ coreγ′(G) with probability at least 1−1/n2 by Lemma 5.9. Hence
BG(u) ⊆ Bk with probability at least 1− 2/n2.

In the following, we bound the size of Bk. Lemma 5.12 holds for all circles with high
probability. In our case, Vol(Ck−1) ≤ Vol(Bk−1) < nβ . By Lemma 5.12, |Ck| ≤ Ek−1 ≤
4nβ with probability at least 1− 1/n2. Then, |Bk| = |Bk−1|+ |Ck| ≤ Vol(Bk−1) + |Ck| ≤
5nβ .

Since BG(u) ⊆ Bk with probability at least 1 − 2/n2, we have |E(BG(u))| =
O(vol(Bk−1(u))) = O

(∑k−1
i=0 Ei

)
, with probability at least 1− 2/n2.

By Lemma 5.12, with probability at least 1− 1/n2, Ei ≤ 4 · 192 lnn+ 4Vol(Ci) for all
i. Since k ≤ nβ , with probability at least 1− 3/n2,

|E(BG(u)| = O

(
k−1∑
i=0

Ei

)
= O(4 · 192nβ lnn+ 4Vol(Bk−1)) = O(nβ log n).

5.5. Table Sizes and Computations
The core coreγ′(G) has size Θ(nγ) with probability at least 1−1/n2 (Lemma 5.10) and all
balls BG(u) have size O(nβ) with probability at least 1−3/n2 (Lemma 5.11). Therefore,
we have the following result.

LEMMA 5.13. For a random graph G sampled from RPLG(n, τ), for all u ∈ V (G),
the expected table size is at most

|tbl(u)| = O(nγ)

and all tables can be generated in expected time at most O(n1+γ log n). These bounds
also hold with probability at least 1− 1/n.
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PROOF. Note that each entry of tbl(u) has O(log n) bits. Thus the total table size
per node is O(nγ log n) bits.

Our algorithm is deterministic. The expected time (space) complexity is the average
running time (space) of our algorithm over all graphs from the random graph distribu-
tion RPLG(n, τ).

Given a graph G with n nodes and m edges, our algorithm computes the core
coreγ′(G) of G with time complexity O(m + n log n). It runs a complete breadth-first
search for each node of the core in time O(m). Let BG(u) be the ball computed in our
algorithm for vertex u. Let T (BG(u)) denote the time to compute BG(u). Therefore, the
time complexity TC and space complexity SC of our algorithm are at most

TC(G) = O

m · |coreγ′(G)|+
∑

v∈V (G)

T (BG(u))

 , (4)

SC(G) = O

n · |coreγ′(G)|+
∑

v∈V (G)

|BG(u)|

 . (5)

We now know that with probability at least 1−5/n2, all of the following conditions are
true: (1) m = Θ(n) (Corollary 5.7); (2) |coreγ′(G)| = Θ(nγ) (Lemma 5.10); (3) |BG(u)| =
O(nβ) for all vertices u (Lemma 5.11); (4) T (BG(u)) = O(nβ log n) for all vertices u
(Lemma 5.11). Therefore, from Equations (4) and (5), we know that with probability at
least 1 − 5/n2, the space complexity of our algorithm is O(n1+γ + n1+β) and the time
complexity is O(n1+γ + n1+β log n).

Finally, we fix the parameters to obtain a balanced scheme. In a balanced scheme,
the core size and the expected ball sizes are asymptotically equivalent, that is, β = γ.

β = γ′(τ − 2) +
(2τ − 3)ε
τ − 1

and

γ′ =
1− γ
τ − 1

, we have

γ =
τ − 2
2τ − 3

+ ε

Therefore, assuming that Equation (1) is satisfied, the space requirement per node is
O(nγ log n) bits and the preprocessing time is bounded by O(n1+γ log n), which holds
with probability at least 1− 1/n.

5.6. Address Lengths
We now bound the number of bits for the address of each vertex. For one vertex u, its
address contains the encoding of the shortest path SP (u, `(u)) from u to its landmark
`(u). We need to bound the diameter of a random power-law graph and the diameter of
its core.

LEMMA 5.14 (CHUNG AND LU [CHUNG AND LU 2002, CLAIM 4.4]). For a ran-
dom graph sampled from RPLG(n, τ), with probability at least 1 − o(1), the diameter
of its largest connected component is O(log n).

By Lemma 5.14, the length of SP (u, `(u)) is at most O(log n) asymptotically almost
surely. Therefore, SP (s, t) can be encoded with O(log2 n) bits. This bound can be im-
proved to O(log n · log log n), as proven in the following lemma.
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LEMMA 5.15. For a random graph G sampled from RPLG(n, τ), with probabil-
ity at least 1 − o(1), it holds that for all s, t ∈ V (G), SP (s, t) can be encoded with
O(log n log log n) bits.

The proof is split into several claims from [Chung and Lu 2002]. We first extend the
core.

Definition 5.16. The extended core of a random graph from RPLG(n, τ) contains all
nodes vi with wi at least n1/ log logn, that is, core+(~w) = {vi ∈ V : wi ≥ n1/ log logn}.

Note that, as τ is a constant, 1/ log log n ≤ γ′ for large enough n, and thus core+(~w) ⊇
coreγ′(~w). The following lemma constitutes a bound for the diameter of the core.

LEMMA 5.17 (CHUNG AND LU [CHUNG AND LU 2002, CLAIM 4.1]). Let G be a
random graph sampled from RPLG(n, τ) with n sufficiently large. The diameter of
the subgraph induced by core+(~w) in G is O(log log n) with probability at least 1− 1/n.

The next lemma states that a vertex vi with large enough wi is close to the extended
core.

LEMMA 5.18 (CHUNG AND LU [CHUNG AND LU 2002, CLAIM 4.2]). Let G be a
random graph sampled from RPLG(n, τ). There exists a constant C, such that each
vertex vi with wi ≥ logC n is at distance O(log log n) from the extended core, with prob-
ability at least 1− 1/n2.

COROLLARY 5.19 (COROLLARY OF LEMMA 5.18). Let G be a random graph sam-
pled from RPLG(n, τ) with n sufficiently large. Let C be the constant in Lemma 5.18.
With probability at least 1 − 1/n, the distance between any two vertices vi, vj with
wi ≥ logC n and wj ≥ logC n is O(log log n).

The power-law degree sequence of our RPLG(n, τ) with τ ∈ (2, 3) is chosen such
that the magnitude of each element wi is at least as large as the corresponding de-
gree potential in [Chung and Lu 2002]. The sequence of edge probabilities in [Chung
and Lu 2002] is stochastically dominated by the sequence of RPLG(n, τ). Sampling
a graph from each of the distributions simultaneously, we obtain that, intuitively, a
graph sampled from RPLG(n, τ) “contains a subgraph” from FDRG. Distances in a
graph sampled from RPLG(n, τ) can only be shorter than in the corresponding graph
sampled from FDRG. Consequently, Lemma 5.17 and Lemma 5.18 can be directly ex-
tended to RPLG(n, τ). The proof of Lemma 5.14 in [Chung and Lu 2002] is based on
the volume expansion. Since our graph has larger wi values, the volume expansion ar-
guments can be directly applied and Lemma 5.14 holds for our graph as well. We are
now ready to prove Lemma 5.15.

PROOF OF LEMMA 5.15. Let vi and vj be the first and the last vertex in SP (s, t)
from s to t such that wi and wj both are greater than logC n, where C is the constant
from Lemma 5.18. By Corollary 5.19, with probability 1− 1/n, the portion of the short-
est path SP (s, t) between vi and vj has length at most O(log log n). Therefore, this
portion of the shortest path can be encoded with O(log n log logn) bits, with probability
1− 1/n.

For the rest of the shortest path, each node has wi at most logC n. By Lemma 5.5, all
such nodes have degree at most 3 logC n with probability at least 1 − 2/n3. To encode
the next neighbor in the shortest path, at most O(log log n) bits are necessary. Since
SP (s, t) contains O(log n) nodes with probability 1 − o(1) (Lemma 5.14), the rest of
the shortest path can also be encoded with O(log n log log n) bits, with probability 1 −
o(1).
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COROLLARY 5.20. For a random graph G sampled from RPLG(n, τ) with n suffi-
ciently large, with probability at least 1−o(1), it holds that for all u ∈ V (G), the address
addr(u) can be encoded with O(log n log log n) bits.

5.7. Additional Remarks
We give a more detailed explanation on why our analysis does not work to bound
cluster sizes.

Our analysis crucially relies on Lemma 5.8 (from [Chung and Lu 2002]), using which
we bound the ball sizes |B(u)|. When trying to bound the size of the cluster C(u), the
analysis breaks as follows: the lemma can be applied only in random graphs in which
the edges between two sets C(u) and A are independently and randomly selected ac-
cording to the random power-law graph model, after the sets C(u) and A have been
fixed. In other words, to apply Lemma 5.8, one has to first fix two sets C(u) and A
without revealing any random edges between C(u) and A in the random graphs. Af-
ter set A is determined, C(u) is defined to be the set {v : d(v, u) < d(v,A)}. But to
determine C(u), one must know the distance from v to A, which means the random
edges between v and A have been revealed, and in particular, if there is an edge be-
tween v and some node in A, then v is not in C(u) (since for all v ∈ C(u), we have that
d(v,A) > d(v, u) ≥ 1). In this case, C(u) has been biased to be a set “far away” from A,
and since the randomness of the edges between C(u) and A is no longer there, one can
no longer apply Lemma 1 to derive an upper bound on the size of C(u).

On the contrary, when we use balls, those balls B0, B1, . . . can be determined with-
out revealing any edges between the balls and the core. Therefore we can still apply
Lemma 5.8 to limit the sizes of the balls.

6. EXPERIMENTAL EVALUATION OF THE COMPACT ROUTING SCHEME
In this section, we experimentally demonstrate the efficiency of our scheme. We use
the following datasets in our experiments.

Real-world graphs.. The most important application scenario for a compact routing
scheme is arguably a communication network. The router-level topology of a portion
of the Internet,2 measured by CAIDA [CAIDA Cooperative Association for Internet
Data Analysis 2003], is an undirected, unweighted graph with 190,914 nodes and
607,610 edges. The estimated power-law exponent (maximum likelihood method [New-
man 2005]) is τ̂ = 2.82.

Random power-law graphs.. We extracted the largest connected component from
the random power-law graphs generated by Brady and Cowen [2006] (pre-generated
graphs, N =10,000 and τ ∈ (2, 3), downloaded from http://digg.cs.tufts.edu/). In
the results, we call them BC Graphs.

In addition, we generated graphs on 10,000 nodes with the tool BRITE [Medina et al.
2001] using the configurations for the Barabási [Barabási and Albert 1999] and Wax-
man [Waxman 1988] models for an Autonomous System Topology (AS) and a Router
Topology (RT) — the precise configurations are listed in Section A. The number of
edges generated is roughly 20,000. Edge weights were ignored and the links were in-
terpreted as undirected.

Note that for all the random graphs considered, the generation process does not
exactly match the RPLG(n, τ).

2It is unclear whether the measurements provide an accurate representation of the Internet [Roughan et al.
2011].
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Graph CAIDA ASBarabasi RTBarabasi ASWaxman RTWaxman
random, p = n−1/2 929.84±95.40 204.03±25.57 208.32±22.21 221.95± 24.73 217.75± 28.00
highdeg, dnγe 173.68±55.80 32.16±41.30 44.95±58.21 139.45±142.94 130.65±131.78
BC Graphs τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5
random, p = n−1/2 74.90±37.96 74.94±44.78 77.49±50.56 79.74± 55.50 82.54± 60.17
highdeg, dnγe 55.20±67.48 48.50±54.57 42.20±42.94 43.28± 40.10 43.55± 38.37
BC Graphs τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9
random, p = n−1/2 86.88±69.69 85.56±71.35 84.69±73.87 76.65± 71.71
highdeg, dnγe 45.59±39.59 50.24±46.08 56.48±56.26 46.85± 46.65

Table I.
Table
sizes:
mean
and
stan-
dard
de-
vi-
a-
tion

Routing schemes.. In the specification of our routing scheme LANDMARKBALLROUT-
ING, we use nγ

′
/4 as a degree threshold (Definition 3.3) and obtain a core of size Θ(nγ).

The largest connected components of the graphs generated by Brady and Cowen [2006]
and the graphs generated using BRITE [Medina et al. 2001] do not contain nodes with
such a high degree. Therefore, for the experiments with our routing scheme, the algo-
rithm selects the dnγe nodes with the highest degrees as landmarks. In practice, this
might indeed be a better strategy.

We compare our high-degree selection strategy with the random selection with prob-
ability n−1/2, which is similar to Thorup and Zwick [2001] for k = 2. Recall that
their scheme is not optimized for power-law graphs but works for general, weighted
graphs as well. We also compare our scheme with the values obtained by Brady and
Cowen [2006].

Settings and results.. For the graphs generated by Brady and Cowen [2006], the
high-degree selection and the random sampling process were executed five times for
each of the ten graphs per value of τ , which gives a total of 5 · 10 · 9 · 2 = 900 routing
scheme constructions. For each of the remaining graphs (Barabási, Waxman, CAIDA),
both schemes were constructed at least 10 times. We report the table sizes (mean and
standard deviation) in Table I. For each instance, 200 random (s, t) pairs were gener-
ated and packets routed. The multiplicative stretch (the length of the route divided by
the length of a shortest path) is reported in Table II. The additive stretch (the length
of the route minus the length of a shortest path) is reported in Table III.

In our experiments, the strategy of selecting few high-degree nodes as landmarks
always produces significantly smaller routing tables compared to a large number of
landmarks selected at random. The best results are achieved for the graphs stemming
from the Barabási model, for which the high-degree-based tables are roughly 5 times
smaller than their random-based counterpart. The average table size for the randomly
selected landmarks is close to

√
n, which means that most balls are actually (almost)

empty. As predicted by our analysis, this indicates that, for power-law graphs, the
optimal balance for randomly selected landmarks may be smaller than O(

√
n).
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Graph CAIDA ASBarabasi RTBarabasi ASWaxman RTWaxman
random 1.28 ±0.16 1.38 ±0.28 1.38 ±0.25 1.37 ±0.25 1.38 ±0.16
highdeg, dnγe 1.12 ±0.14 1.15 ±0.21 1.20 ±0.22 1.36 ±0.26 1.35 ±0.24
BC Graphs τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5
random, p = n−1/2 1.340±0.240 1.350±0.243 1.347±0.251 1.342±0.259 1.335±0.261
highdeg, dnγe 1.300±0.239 1.264±0.230 1.226±0.227 1.211±0.226 1.183±0.221
BC Graphs τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9
random, p = n−1/2 1.330±0.275 1.306±0.281 1.290±0.286 1.247±0.284
highdeg, dnγe 1.160±0.218 1.151±0.222 1.147±0.237 1.111±0.216

Table II.
Multiplicative
stretch:
mean
and
stan-
dard
de-
vi-
a-
tion

BC Graphs τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5
random, p = n−1/2 1.744±1.001 1.955±1.098 2.112±1.243 2.302±1.405 2.512±1.617
highdeg, dnγe 1.532±1.015 1.463±1.069 1.360±1.158 1.394±1.266 1.342±1.373
BC Graphs τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9
random, p = n−1/2 2.752±1.903 2.946±2.254 3.250±2.736 3.173±3.124
highdeg, dnγe 1.309±1.514 1.442±1.824 1.608±2.266 1.384±2.331

Table III.
Additive
stretch:
mean
and
stan-
dard
de-
vi-
a-
tion

The average stretch is surprisingly consistent among different datasets. Even
though there are fewer landmarks, the average stretch is better if high-degree nodes
are selected as landmarks. Brady and Cowen [2006] claim average stretch 1.18–1.25
for the scheme by Thorup and Zwick [2001]. Our experiments do not confirm this claim:
randomly selected nodes (similar to TZ) did not achieve this stretch. A possible reason
for this could be that we use balls instead of clusters for short-range distances. Brady
and Cowen also claim average stretch 1.11–1.22 for their scheme and small values for
τ ∈ {2.1, 2.2, 2.3}. Our scheme, except for the graphs of the Waxman model and for
small values of τ ≤ 2.2, also achieves these average stretch values. The worst-case
stretch is difficult to compare as our scheme has a (non-experimental) worst-case mul-
tiplicative stretch and the scheme by Brady and Cowen has an experimental worst-case
additive stretch. Brady and Cowen conclude from their topology experiments that, for
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graphs up to 40,000 nodes, their scheme has a worst-case additive stretch of 10 while
maintaining O(log2 n)-bit tables per node. For nodes ‘close’ to each other (distance less
than 5), the multiplicative stretch of 3 yields better stretch guarantees. For nodes ‘far’
from each other (distance at least 5), the additive stretch of 10 yields better stretch
guarantees. In power-law graphs, most distances are short, the typical distance being
O(log log n) [Chung and Lu 2002].

The high-degree nodes in the power-law graphs of the Waxman model have only very
few edges: the highest degree is only 20. Furthermore, as dnγe = 3, the core is really
small and so is the cumulative degree. Compared to the other power-law graphs, the
high-degree selection strategy does not produce huge benefits but it still outperforms
random selection. In practice, one might add high-degree nodes to the set of landmarks
until a certain cumulative degree threshold (for example

√
n or also a threshold value

dependent on τ ) is reached.

7. APPROXIMATE DISTANCE ORACLE
Compact routing schemes can be seen as the distributed version of approximate dis-
tance oracles. In the following, we use the techniques that allowed us to prove an upper
bound on the maximum routing table size to prove an upper bound on the space re-
quirements of an approximate distance oracle (Section 7.1). We then trade query time
against space: we provide an approximate distance oracle with linear space require-
ments (Section 7.2).

7.1. Distance Oracle with Stretch 3

We prove the following theorem.

THEOREM 7.1. Let γ = τ−2
2τ−3 +ε be a constant. Assume Equation (1) is satisfied. For

random power-law graphs from RPLG(n, τ) (Definition 3.2), there exists a preprocess-
ing algorithm that runs in expected time O(n1+γ log n) and creates a distance oracle of
expected size O(n1+γ). These bounds also hold with probability at least 1 − 1/n. After
preprocessing, approximate distance queries can be answered in O(1) time with stretch
at most 3.

We propose a modification of the distance oracle by Thorup and Zwick [2005, Fig. 5]
for k = 2, which guarantees stretch 3. The main idea of the scheme by Thorup and
Zwick for k = 2 is the following: in the preprocessing step, given a graph G = (V,E),
(1) each node v ∈ V is chosen as a landmark independently at random with probabil-
ity n−1/2. The expected number of landmarks is

√
n. (2) For each node u ∈ V , find its

nearest landmark `(u) and compute the distances from u to all landmarks. To guar-
antee optimal stretch for short distance queries, (3) for every node u ∈ V a local ball
BG(u) = {u′ ∈ V (G) : d(u, u′) < d(u, `(u))} is computed, including all nodes with dis-
tance strictly less than the distance to the landmarks. The result of the distance query
d(s, t) is exact if s ∈ B(t) or t ∈ B(s) and otherwise stretch 3 is guaranteed [Cowen
2001]. Since the set of landmarks consists of a random sample, the expected ball size
is O(

√
n), which is equal to the number of landmarks. This is the optimal balance for

general graphs.
For power-law graphs a better balance is possible. Using high-degree nodes as land-

marks is a natural heuristic. We can select fewer landmarks and obtain smaller sized
balls than [Thorup and Zwick 2005, Fig. 5] at the same time.

Details for the preprocessing step are listed in Algorithm 4.

LEMMA 7.2. Let γ = τ−2
2τ−3 + ε be a constant. Assume Equation (1) is satisfied. For

random power-law graphs RPLG(n, τ), Algorithm 4 runs in expected timeO(n1+γ log n)
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ALGORITHM 4: Preprocess (G = (V,E), γ′)

compute core← {v ∈ V : deg(v) > nγ
′
/4}

for each v ∈ core do
run breadth-first search from v in G
for each node u 6= v, store d(u, v)

end for
for each u ∈ V do

compute and store Bcore(u) (including distances)
end for

and creates a distance oracle of expected size O(n1+γ). These bounds also hold with
probability at least 1− 1/n.

PROOF. The analysis of the compact routing scheme can be applied directly
(Lemma 5.11 and proof of Lemma 5.13).

The query algorithm is the same as in [Thorup and Zwick 2005] for k = 2, see Algo-
rithm 5.

ALGORITHM 5: Distance (s, t)

if s ∈ BS(t) or t ∈ BS(s) then
return local distance d(s, t) from the information at s or t.

else
return d(s, `(t)) + d(`(t), t)

end if

LEMMA 7.3. Algorithm 5 runs in time O(1) and achieves stretch 3.

PROOF. Stretch and time bounds from [Thorup and Zwick 2005] apply. For
each node preprocessed information is stored in a hash table with constant access
time [Fredman et al. 1984].

Theorem 7.1 is immediate from Lemmas 7.2 and 7.3.

7.2. Linear-Space Data Structure
In practical scenarios (such as social networks with millions of individuals) the graph
may be too large to store a distance oracle that requires super-linear space. In the fol-
lowing, we propose and analyze a distance data structure that can be stored using lin-
ear space. For any subset of O(

√
n) nodes a complete distance table can be stored using

linear space. Long-range distances can be approximated by passing through two land-
marks in the subset. For short-range distances, we again use balls. These balls can be
either pre-computed (resulting in constant query time but larger space requirements)
or they can be explored at query time (resulting in longer query time but smaller space
requirements).

More generally, we can trade space against query time, depending on the applica-
tion’s needs. For a parameter ξ ∈ [0, 1/2] we choose a set of landmarks of size O(n1/2+ξ)
and compute a complete distance table, which requires space O(n1+2ξ). Furthermore,
for each node v ∈ V we store its nearest landmark. At query time, given two nodes s
and t, we explore both balls (similar to Algorithm 5, but now the balls have not been
precomputed). The query time increases, as described by the following theorem.
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THEOREM 7.4. Let ξ ∈ [0, 1/2] and let γ′′ = (1/2−ξ)(1−1/(τ−1))+ε be two constants.
Assume Equation (1) is satisfied. For random power-law graphs from RPLG(n, τ) (Def-
inition 3.2), there exists a preprocessing algorithm that runs in time O(n3/2+ξ log n) and
creates a distance data structure of size O(n1+2ξ). After preprocessing, approximate dis-
tance queries can be answered in expected time O(nγ

′′
log n) with stretch at most 5. The

bound on the query time also holds with probability at least 1− 1/n.

Note that we may set ξ := 0, in which case we obtain a linear-space distance “oracle”
with query time O(n

1−1/(τ−1)
2 +ε log n). For any τ ∈ (2, 3) the exponent is at most 1/4 + ε.

For smaller values of τ (not too far from 2) the exponent is roughly 1/10.
The remainder of this section is devoted to the proof of Theorem 7.4. Algorithm 6 lists

the pseudo-code for the preprocessing algorithm, which is very similar to Algorithm 4.

ALGORITHM 6: Preprocess (G = (V,E), ξ)

compute core as the set of the n1/2+ξ nodes with highest degree
for each v ∈ core do

run breadth-first search from v in G
for each node v 6= u ∈ core, store d(u, v)
for each node u 6= v update `(u) if v is the nearest landmark

end for

LEMMA 7.5. Let ξ ∈ [0, 1/2] and let ε > 0 be two constants. Assume Equa-
tion (1) is satisfied. For random power-law graphs from RPLG(n, τ) the following
holds: with respect to the core with Θ(n1/2+ξ) nodes, each ball has size at most
O(n(1/2−ξ)(1−1/(τ−1))+ε log n) with probability at least 1− 1/n2.

PROOF. We start by estimating the volume of the core. The smallest volume of any
node in the core is given by wk for k = n1/2+ξ, which is

wk =
(n
k

) 1
τ−1

= n
1/2−ξ
τ−1 .

The asymptotic volume of the core is thus at least

n1/2+ξ · n
1/2−ξ
τ−1 ,

which implies (using Lemma 5.8 in the exact same way as in the proof of Lemma 5.11)
that balls have size at most (up to constant and logarithmic factors)

n1−(1/2+ξ)− 1/2−ξ
τ−1 +ε = n(1/2−ξ)(1−1/(τ−1))+ε.

The pseudo-code of the query algorithm is listed as Algorithm 7.

ALGORITHM 7: Distance (s, t)

explore BS(s) and BS(t) using BFS, return distance if s or t are found
if s 6∈ BS(t) and t 6∈ BS(s) then

return d(s, `(s)) + d(`(s), `(t)) + d(`(t), t)
end if
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LEMMA 7.6. Algorithm 7 achieves stretch 5.

PROOF. Given a query pair (s, t), we have that either s ∈ B(t) or t ∈ B(s) (in which
case the algorithm returns the exact distance) or

d̃(s, t) = d(s, `(s)) + d(`(s), `(t)) + d(`(t), t)
≤ d(s, t) + d(`(s), `(t)) + d(s, t)
≤ d(s, t) + 3d(s, t) + d(s, t) = 5d(s, t)

Lemma 7.5 and Lemma 7.6 imply Theorem 7.4.

Note. Using recent improvements on distance oracles [Patrascu and Roditty 2010;
Agarwal et al. 2011], there also is a query algorithm with better stretch, exploiting
that we can compute whether the two balls intersect.

8. CONCLUSION
Our analysis provides theoretical justification that high-degree nodes in power-law
graphs are indeed very powerful for finding shortest paths in such networks, and thus
are effective in improving the performance of shortest-path-related computations.

Perhaps the most intriguing question is whether even polylogarithmic tables would
suffice to route with small stretch in power-law graphs. Recent results on distance
oracles [Sommer et al. 2009] suggest that n1+ε space is necessary to answer distance
queries in constant time for sparse graphs. The lower bound does not extend to routing
though. It also remains open whether the scheme by Thorup and Zwick for general k
can be optimized for power-law graphs and whether similar techniques can be applied
to the name-independent scheme by Abraham et al. [2008]. An average-case analysis
of the actual scheme by Thorup and Zwick would be interesting as well as a rigor-
ous analysis of the scheme by Brady and Cowen [2006]. Routing with additive stretch,
however, appears to require large routing tables [Gavoille and Sommer 2011]. Further-
more, the analysis for other random power-law graphs models could be an interesting
topic.
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ERDŐS, P. AND RÉNYI, A. 1960. On the evolution of random graphs. Magyar Tudományos Akadémia Matem-
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A. DETAILS FOR THE BRITE GRAPHS USED IN THE EXPERIMENTS
We provide the detailed parameters used to generate the graphs using BRITE [Medina
et al. 2001], based on the Barabási [Barabási and Albert 1999] and Waxman [Waxman
1988] models. We use the prefix of AS to denote the Autonomous System topology and
RT to denote the Router Topology.
Model (1 - RTWaxman): 10000 1000 100 1 2 0.15 0.2 1 1 10.0 1024.0
Model (2 - RTBarabasi): 10000 1000 100 1 2 1 10.0 1024.0
Model (3 - ASWaxman): 10000 1000 100 1 2 0.15 0.2 1 1 10.0 1024.0
Model (4 - ASBarabasi): 10000 1000 100 1 2 1 10.0 1024.0

The resulting graphs have the following numbers of nodes and edges, and the corre-
sponding power-law exponent τ̂ , estimated using [Newman 2005].

Graph Nodes Edges τ̂
ASWaxman 10,000 20,000 2.806
RTWaxman 10,000 20,000 2.806
ASBarabasi 10,000 19,997 2.893
RTBarabasi 10,000 19,997 2.892
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