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ABSTRACT
Given a triangulated planar graph G on n vertices and an
integer r < n, an r–division of G with few holes is a decom-
position of G into O(n/r) regions of size at most r such that
each region contains at most a constant number of faces that
are not faces of G (also called holes), and such that, for each
region, the total number of vertices on these faces is O(

√
r).

We provide an algorithm for computing r–divisions with
few holes in linear time. In fact, our algorithm computes
a structure, called decomposition tree, which represents a
recursive decomposition of G that includes r–divisions for
essentially all values of r. In particular, given an exponen-
tially increasing sequence �r = (r1, r2, ...), our algorithm can
produce a recursive �r–division with few holes in linear time.

r–divisions with few holes have been used in efficient algo-
rithms to compute shortest paths, minimum cuts, and max-
imum flows. Our linear-time algorithm improves upon the
decomposition algorithm used in the state-of-the-art algo-
rithm for minimum st–cut (Italiano, Nussbaum, Sankowski,
and Wulff-Nilsen, STOC 2011), removing one of the bottle-
necks in the overall running time of their algorithm (analo-
gously for minimum cut in planar and bounded-genus graphs).

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms
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1. INTRODUCTION
Separators decompose a graph in a balanced way into two

subgraphs with a limited number of vertices in common.
Separators are often used in efficient algorithms using a
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divide-and-conquer strategy [36, 10, 45, 44]. Graphs with
small recursive separators include planar graphs [51, 35, 11,
38, 20, 48, 13], bounded-genus graphs [12, 21, 31], minor-
free graphs [3, 2, 41, 42, 7, 30, 54], and graphs with bounded
tree-width [23, 43, 6]. Furthermore, for graphs of all these
classes, separators can be found efficiently, often in linear
time. For planar graphs, experimental results demonstrate
that separator algorithms are practical [1, 26, 18].

Perhaps the most influential result of this kind is the
linear-time algorithm of Lipton and Tarjan [35] for finding
a separator of size O(

√
n) in a planar graph with n vertices.

Consider the result of using this algorithm recursively un-
til each separated subgraph has size at most some specified
limit r. It is easy to show that O(n/r) subgraphs result, and
that the average number of boundary vertices per subgraph
is O(

√
r). Frederickson [19] showed that, with additional

care, one can ensure that each subgraph has O(
√
r) bound-

ary vertices; he named such a decomposition an r–division,
and he referred to the subgraphs as regions. The running
time of Frederickson’s algorithm is O(n log r+(n/

√
r) log n).

Decompositions of such kind have been used in many effi-
cient algorithms for planar graphs, e.g. for computing short-
est paths [19, 25], maximum flow [28], polygon triangula-
tion [22], and I/O–efficient algorithms [37].

For some of these applications, Frederickson’s algorithm
for r–divisions is too slow. Goodrich [22] gave a linear-
time algorithm that achieves O(

√
r) boundary size for pla-

nar graphs (see [4] for the I/O model). Even this was not
enough for the linear-time shortest-path algorithm of Hen-
zinger, Klein, Rao, and Subramanian [25], which requires
recursive applications of an algorithm for r–divisions (with
roughly log∗ n levels of recursion). They addressed this by
showing that a linear-time O(

√
n) separator algorithm could

be used to obtain a sublinear-time separator algorithm with
a worse (but still sublinear) boundary-size guarantee.

However, for some of the more involved algorithms work-
ing with planar embedded graphs, it is essential that the
regions of the division are topologically “nice” in that the
boundary of each region consists of a constant number of
faces, also called holes. Such a division can be found by us-
ing small cycle separators (Miller [38]) instead of just small
separators, and incorporating iterations in which the graph
is separated according to the number of holes.

Such r–divisions with a constant number of holes were
first used in algorithms of Klein and Subramanian [32, 49],
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and subsequently in many other algorithms [17, 9, 8, 40, 27,
34, 29, 16, 39, 33].1

Up to now, the fastest known algorithm computing an
r–division with a constant number of holes per region runs
in time O(n log r + (n/

√
r) log n) [27]. This makes it one

of the time bottlenecks in the state-of-the-art algorithms
for minimum st–cut and maximum st–flow [27] and min-
imum cut [34] in undirected planar graphs and bounded-
genus graphs [16]. Whether such an r–division can be com-
puted in linear time was an open problem until the current
work. For example, Cabello [8] remarks that “it is unclear if
the algorithm of Goodrich [22] can also be modified to use the
cycle-separator, and thus obtain a linear-time construction
of r–decompositions with a few holes.”

Contributions
We provide a linear-time algorithm for computing r–divisions
with few holes for any triangulated biconnected plane graph G
and any r (Theorem 2).

In fact, the algorithm produces a decomposition tree of G
(Theorem 3), which is a tree that naturally represents a
recursive decomposition of G by cycle separators, and from
which one can read off, in linear time, a recursive �r–division
with few holes, for any exponentially increasing sequence
�r = r1, r2, . . . (Theorem 4).

Our linear-time algorithm improves upon the O(n log r +
(n/
√
r) log n)–time algorithm in [27], removing one of the

time bottlenecks of the state-of-the-art algorithms for mini-
mum st–cut and maximum st–flow [27], as well as minimum
cut [34, 16] (all in undirected graphs).

Concurrently with and independently of our result, Arge,
van Walderveen, and Zeh [5] also gave an algorithm that
produces an r–division with few holes in linear time. The
focus of their paper is I/O-efficient algorithms. Their ap-
proach differs from ours in that their algorithm requires the
value of r as input, and uses it in a way that makes it unsuit-
able for producing recursive �r–divisions in linear time. Such
a linear time algorithm seems to be crucial for obtaining
linear-time algorithms using r–divisions (see [25]).

Techniques
The overall approach of our algorithm builds on that of
Goodrich [22], which is based on Lipton-Tarjan vertex sep-
arators [35]. However, our approach must handle the addi-
tional complexity of finding cycle separators (see Miller [38]),
which involves maintaining spanning trees in both the input
graph and its planar dual, and of bounding the number of
holes. We manage both primal and dual trees simultane-
ously by using a primal spanning tree that follows a dual
breadth-first-search tree (Section 4.2). The levels of the dual
BFS tree define connected components, which we maintain
in a Component Tree (Section 4.1). This component tree
internally captures the structural connectivity of dual BFS
components.

Outline
Precise definitions of r–divisions, holes, recursive divisions,
and decomposition trees, as well as formal statements of our
results are in Section 2.4 and Section 2.5. We give a high-
level description of the r–division algorithm and prove its

1Cabello [8] requires only that the average number of holes
per region be small.

correctness in Section 3. A key ingredient in our algorithm
is a cycle separator algorithm (Section 4) that can be imple-
mented in sublinear time by using auxiliary data structures
(based on dynamic trees and Euler-tour trees). This is cru-
cial for achieving overall linear time. In our algorithm, we
initialize the data structures once, and then, in subsequent
steps of the recursion, we reuse what has been computed al-
ready (Section 5), and we call an efficient dynamic-tree im-
plementation of our cycle separator algorithm (Section 4.5).

Some of the proofs and figures have been omitted from
this extended abstract due to page limitations. See the full
version for details.

2. PRELIMINARIES

2.1 Graph Notation
Let G = (V,E) be a simple graph. For a subset V ′ of V ,

we denote by δG(V ′) the set of edges uv of G such that
v ∈ V ′ and u �∈ V ′. We refer to δG(V ′) as a cut in G. If V ′

and V −V ′ both induce connected subgraphs of G, we say it
is a simple cut (also known as a bond). In this case, V ′ and
V −V ′ are the vertex-sets of the two connected components
of δG(V ′), which shows that the edges of δG(V ′) uniquely
determine the bipartition {V ′, V − V ′}.

A graph is called biconnected iff any pair of vertices is
connected by at least two vertex-disoint paths.

For a spanning tree T of G and an edge e of G not in T ,
the fundamental cycle of e with respect to T in G is the
simple cycle consisting of e and the unique simple path in T
between the endpoints of e.

2.2 Some Properties of Planar Graphs
We assume the reader is familiar with the definitions of

planar graphs and combinatorial embeddings.2

Fact 1 (Sparsity). Let G be a simple planar graph.
|E(G)| ≤ 3 |V (G)| − 6.

When the exact constants are not important we write O(|G|)
to denote O(|V (G)|) = O(|E(G)|).

Fact 2 (Simple-cycle/simple-cut duality [53]). A
set of edges forms a simple cycle in a planar embedded graph G
iff it forms a simple cut in the dual G∗.

Since a simple cut in a graph uniquely determines a bipar-
tition of the vertices, a simple cycle in a planar embedded
graph G uniquely determines a bipartition of the faces.

Definition 1. (Encloses) Let C be a simple cycle in a con-
nected planar embedded graph G. Then the edges of C
form a simple cut δG∗(S) for some set S of vertices of G∗,
i.e. faces of G. Thus C uniquely determines a bipartition
{F0, F1} of the faces of G. Let f∞, f be faces of G. We say
C encloses f with respect to f∞ if exactly one of f, f∞ is
in S. For a vertex/edge x, we say C encloses x (with respect
to f∞) if it encloses some face incident to x (encloses strictly
if in addition x is not part of C).

Fact 3 ([52]). For any spanning tree T of G, the set
of edges of G not in T form a spanning tree of G∗.

For a spanning tree T of G, we typically use T ∗ to denote
the spanning tree of G∗ consisting of the edges not in T . We
often refer to T ∗ as the cotree of T [14].
2For elaboration, see http://planarity.org.
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2.3 Separators

Definition 2. For an assignment W (·) of nonnegative weights
to faces, edges, and vertices of G, we say a simple cycle C
is a balanced separator if the total weight of faces, edges,
and vertices strictly enclosed by C and the total weight not
enclosed are each at most 3/4 of the total weight.

(Traditionally balance involves a bound of 2/3. We use 3/4
because it simplifies the presentation.)

One can reduce the case of face/edge/vertex weight to
the case of face weight. For each vertex or edge, remove
its weight and add it to an incident face. A cycle separator
that is balanced with respect to the resulting face-weight
assignment is balanced with respect to the original weight
assignment. We may therefore assume in cycle-separator
algorithms that only the faces have weight.

Let G be a planar embedded graph with face weights.
Suppose that no face has more than 1/4 of the total weight.
Lipton and Tarjan [35] show that, if G is triangulated (every
face has size at most 3) then for any spanning tree T of G,
there is an edge not in T whose fundamental cycle with
respect to T is a balanced separator. Goodrich [22] observed
that such an edge can be found by looking for an edge-
separator in the cotree T ∗ of T .

We modify this approach slightly: let T ∗ be a spanning
tree of the planar dual G∗ of G such that T ∗ has maximum
degree 3. Let T be the cotree of T ∗, so T is a spanning tree
of G. Root T ∗ at an arbitrary vertex of degree one or two.
Let v be a leafmost vertex of T ∗ such that the descendants
of v (including v) comprise more than 3/4 of the weight.
Let ê be the edge of T ∗ connecting v to a child with greatest
descendant weight.

Lemma 1. The fundamental cycle of ê with respect to T
is a balanced simple cycle separator.

Proof. Simple algebra shows each of the two trees of
T ∗ \ {ê} comprises between 1/4 and 3/4 of the total weight.
One of these trees consists of the faces enclosed by C, and
the other consists of the faces not enclosed by C, where C
is the fundamental cycle of ê with respect to T .

Miller [38] proved the following theorem

Theorem 1 (Miller [38]). For a planar triangulated
biconnected graph G with weights summing to W such that
the weight of each face, edge, and vertex is at most 2W/3,
there is a linear-time algorithm that finds a simple cycle C of
length at most 2

√
2 |V (G)| such that the total weight strictly

enclosed is at most 2W/3, and the total weight not enclosed
is at most 2W/3.

In this paper, we do not use Miller’s construction. We give
another construction that, with the aid of some auxiliary
data structures, can be carried out in sublinear time. For
simplicity of presentation, we present a construction that
achieves a balance of 3/4 instead of 2/3, and refrain from
optimizing the constants that arise in our construction.

2.4 Divisions
Frederickson [19] introduced the notion of r–divisions. Let

Ḡ be an n-vertex planar embedded graph.

Definition 3. A region R of Ḡ is an edge-induced sub-
graph of Ḡ.

Definition 4. A division of Ḡ is a collection of regions such
that each edge is in at least one region. A vertex is a bound-
ary vertex of the division if it is in more than one region. A
division is an r–division if there are O(n/r) regions, and each
region has at most r vertices and O(

√
r) boundary vertices.

Frederickson’s definition did not address the number of
holes since it was not relevant in his algorithms (and in
some subsequent algorithms building on his). The follow-
ing definition follows the lines of that of Cabello [8] but our
terminology is slightly different.

Definition 5. A natural face of a region R is a face of R
that is also a face of Ḡ. A hole of R is a face of R that is
not natural.

Definition 6. An r–division with few holes is an r–division
in which any edge of two regions is on a hole of each of them,
and every region has O(1) holes.

This differs from Cabello’s definition in that his requires only
that the average number of holes per region be O(1). We
use a stronger requirement because some algorithms depend
on it.

Theorem 2. For a constant s, there is a linear-time algo-
rithm that, for any biconnected triangulated planar graph Ḡ
and any r ≥ s, outputs an r–division of Ḡ with few holes.

In fact, our algorithm further guarantees that all regions in
the r–division are connected. This property is desirable in
some applications (e.g., [33])

2.5 Recursive Divisions and Decomp. Trees
Some algorithms, e.g. the shortest-path algorithm of Hen-

zinger et al. [25], require that the graph be decomposed into
regions which are in turn decomposed into regions, and so
on. That algorithm requires roughly log∗ n levels of decom-
position, so it would take more than linear time to find all
the different divisions independently. We describe a simple
decomposition of a planar graph that allows one to obtain
such recursive divisions in linear time.

Definition 7. A decomposition tree for Ḡ is a rooted tree
in which each leaf is assigned a region of Ḡ such that each
edge of Ḡ is represented in some region. For each node x of
the decomposition tree, the region Rx corresponding to x is
the subgraph of Ḡ that is the union of the regions assigned
to descendants of v.

Definition 8. A decomposition tree T admits an r–division
with few holes if there is a set S of nodes of T whose corre-
sponding regions form an r–division of Ḡ with few holes.

Theorem 3. For a constant s, there is a linear-time algo-
rithm that, for any biconnected triangulated planar embedded
graph G, outputs a binary decomposition tree T for G that
admits an r–division of G with few holes for every r ≥ s.

Definition 9. For an exponentially increasing sequence �r =
(r1, r2, . . .) of numbers, a recursive �r–division of G with few
holes is a decomposition tree for G in which, for i = 1, 2, . . .,
the nodes at height i correspond to regions that form an
ri–division of G with few holes.



A recursive �r–division is exactly the kind of structure that
is useful for the linear-time shortest-paths algorithm [25],
although that algorithm does not require one with few holes.

Theorem 4. There is a linear-time algorithm that, given
a decomposition tree satisfying the condition of Theorem 3,
and given an increasing sequence �r, returns a recursive �r–
division of G with few holes.

Note that Theorems 2 and 4 follow easily from Theorem 3.

3. COMPUTING A DECOMP. TREE
In this Section we give a high-level description of the al-

gorithm of Theorem 3 for computing a decomposition tree,
and prove its correctness. The input graph Ḡ is assumed to
be biconnected and triangulated. It follows that, for every
region R of Ḡ, every natural face is a triangle.

The algorithm is as follows. Given the input graph Ḡ,
the algorithm performs some preprocessing necessary for the
sublinear-time cycle-separator algorithm (Algorithm 2), and
calls RecursiveDivide(Ḡ, 0). This main procedure is given
in Algorithm 1. The parameter s is a constant appearing in
the statement of Theorems 2 and 3.

Algorithm 1: RecursiveDivide(R,�)

1 let n = |V (R)|
2 if n ≤ s then return a decomposition tree consisting

of a leaf assigned R
3 if � mod 3 = 0 then separator chosen below to balance

number of vertices
4 else if � mod 3 = 1 then separator chosen to balance

number of boundary vertices
5 else if � mod 3 = 2 then separator chosen to balance

number of holes
6 let R′ be the graph obtained from R as follows:

triangulate each hole by placing an artificial vertex in
the face and connecting it via artificial edges to all
occurrences of vertices on the boundary of the hole

7 find a balanced simple-cycle separator C in R′ with at
most c

√
n natural vertices

8 let F0, F1 be the sets of natural faces of R enclosed and
not enclosed by C, respectively

9 for i ∈ {0, 1} do
10 let Ri be the region consisting of the edges of faces

in Fi and edges of C that are in R
11 Ti ←RecursiveDivide(Ri, � + 1)

12 end
13 return the decomposition tree T consisting of a root

with left subtree T0 and right subtree T1

This procedure, given a connected region R with more
than s edges and given a recursion-depth parameter �, first
triangulates each hole of R by adding an artificial vertex and
attaching it via artificial edges to each occurrence of a vertex
on the boundary of the hole. Let R′ be the resulting graph.
See Figures 1(a), 1(b) for an illustration. The vertices and
edges that are not artificial are natural. Triangulating in
this way establishes biconnectivity of R′.

Lemma 2. R′ is biconnected.

Next, the procedure uses the SimpleCycleSeparator

procedure (Section 4.4) to find a simple-cycle separator C

consisting of at most c
√
n natural vertices, where c is a con-

stant and n := |V (R)| is the number of vertices of R (which
is equivalent to the number of natural vertices of R′). De-
pending on the current recursion depth �, the cycle separates
R in a balanced way with respect to either vertices, bound-
ary vertices, or holes.

Note that SimpleCycleSeparator is called on R′, which
has more than n vertices since it also has some artificial ver-
tices. However, we show in Lemma 5 that there are at most
twelve artificial vertices, so even if we use a generic algorithm
for finding a simple cycle separator, the bound of c

√
n still

holds for some choice of c (since n ≥ s). In fact, our pro-
cedure SimpleCycleSeparator takes into account which
vertices are artificial, and returns a separator consisting of at
most 4

√
3n natural vertices, and possibly also some artificial

vertices. The number of artificial vertices on the separator
does not matter in the analysis of RecursiveDivide.

The cycle C determines a bipartition of the faces of the
triangulated graph R′, which in turn induces a bipartition
(F0, F1) of the natural faces of R. For i ∈ {0, 1}, let Ri be
the region consisting of the edges bounding the faces in Fi,
together with the edges of C that are in R (i.e. omitting the
artificial edges added to triangulate the artificial faces). See
Figures 1(c), 1(d) for an illustration.

Lemma 3. If R is connected then R0 is connected and R1

is connected.

The procedure calls itself recursively on R0 and R1, obtain-
ing decomposition trees T0 and T1, respectively. The pro-
cedure creates a new decomposition tree T by creating a
new root corresponding to the region R and assigning as its
children the roots of T0 and T1.

3.1 Number of Holes
The triangulation step (Line 6) divides each hole h into a

collection of triangle faces. We say a hole h is fully enclosed
by C if all these triangle faces are enclosed by C in R′.

Lemma 4. Suppose that there are k holes that are fully
enclosed by C. Then R0 has k + 1 holes.

Proof. We give an algorithmic proof. See Figure 1 for an
illustration. Initialize R′

0 to be the graph obtained from R′

by deleting all edges not enclosed by C. Then C is the
boundary of the infinite face of R′

0. Consider in turn each
hole h of R such that a nonempty proper subset of h’s trian-
gle faces are enclosed by C. For each such face h, C includes
the artificial vertex xh placed in h, along with two incident
edges uxh and xhv where u and v are distinct vertices on
the boundary of h. Deleting all the remaining artificial edges
of h modifies the boundary of the infinite face by replacing
uxh xhv with a subsequence of the edges forming the bound-
ary of h. In particular, deleting these artificial edges does
not create any new faces.

Finally, for each hole h that is fully enclosed by C, delete
the artificial edges of h, turning h into a face of R′

0. The re-
sulting graph is R0, whose holes are: the holes of R that were
fully enclosed by C, together with the infinite face of R0.

If the recursion depth mod 3 is 2, Line 7 of RecursiveDi-

vide must select a simple cycle in R′ that is balanced with
respect to the number of holes. To achieve this, for each
hole h of R, the algorithm assigns weight 1 to one of the tri-
angles resulting from triangulating h in Line 6, and weight 0
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Figure 1: Illustration of triangulating a hole and separating along a cycle. 1(a) A schematic diagram of a
region R with four holes (white faces, one of them being the unbounded face). 1(b) The graph R′ and a
cycle separator C (double-lined red). Artificial triangulation edges are dashed (triangulation edges are not
shown for the unbounded hole to avoid clutter). 1(c) The region R0 consisting of the edges bounding the
faces not enclosed by C together with the edges of C that belong to R. Equivalently, R0 is the subgraph of
R′ not strictly enclosed by C without any artificial edges and vertices. R0 has three holes. 1(d) The region
R1 consisting of the edges bounding the faces enclosed by C together with the edges of C that belong to R.
Equivalently, R1 is the subgraph of R′ enclosed by C without any artificial edges and vertices. R1 has two
holes. Note that a hole is not necessarily a simple face.

to all other faces. Then the algorithm finds a cycle C that
is balanced with respect to these face-weights.

The following lemma, whose proof follows from Lemma 4,
establishes a constant bound on the number of holes.

Lemma 5. For any region created by RecursiveDivide,
the number of holes is at most twelve.

3.2 Number of Vertices and Boundary Vertices
If the recursion depth mod 3 is 0, Line 7 of Recursive-

Divide selects a simple cycle in R′ that is balanced with
respect to the number of natural vertices. To achieve this,
for each natural vertex v, the algorithm selects an adjacent
face in R′, dedicated to carry v’s weight. The weight of each
face is defined to be the number of vertices for which that
face was selected. Since each face in R′ is a triangle, every
weight is an integer between 0 and 3. A cycle C is then
chosen that is balanced with respect to these face-weights.

If the recursion depth mod 3 is 1, the cycle must be bal-
anced with respect to the number of boundary vertices. For
each boundary vertex, the algorithm selects an incident face;
the algorithm then proceeds as above.

In either case, the total weight enclosed by the cycle C is
an upper bound on the number of vertices (natural or bound-
ary) strictly enclosed by C. Thus at most three-fourths of
the vertices (natural or boundary) of R′ are strictly enclosed
by C in R′. Similarly, at most three-fourths of the vertices
are not enclosed by C in R′.

The vertices of R0 are the natural vertices of R′ enclosed
by C (including the natural vertices on C, which number

at most c
√
|V (R)|), and the vertices of R1 are the natural

vertices of R′ not strictly enclosed by C. Let n = |V (R)|
and, for i ∈ {0, 1}, let ni = |V (Ri)|. We obtain

n0 + n1 ≤ n + c
√
n. (1)

Moreover, if the recursion depth mod 3 is 0, then

max{n0, n1} ≤
3

4
n + c

√
n. (2)

Similarly, let b be the number of boundary vertices of R, and,
for i ∈ {0, 1}, let bi be the number of boundary vertices of

Ri. We obtain

b0 + b1 ≤ b + c
√
n. (3)

Moreover, if the recursion depth mod 3 is 1, then

max{b0, b1} ≤
3

4
b + c

√
n. (4)

3.3 Admitting an r–division
Let N be the number of vertices in the original input

graph Ḡ. Consider the decomposition tree T of Ḡ produced
by RecursiveDivide. Each node x corresponds to a re-
gion Rx. We define n(x) = |V (Rx)|. In this section we
show that, for any given r ≥ s, T admits an r–division of Ḡ.
We adapt the two-phase analysis of Frederickson [19]. In
the first phase (Lemma 6), we identify a set of O(N/r) re-
gions for which the average number of boundary vertices is
O(
√
r). However, some of the individual regions in this set

might have too many boundary vertices (since the number
of vertices and boundary vertices do not necessarily decrease
at the same rate). We show that each such region can be
replaced with smaller regions in T so that every region has
O(
√
r) boundary vertices, and the total number of regions

remains O(N/r) (Lemma 7).
For a node x of T and a set S of descendants of x such that

no node in S is an ancestor of any other, define L(x, S) =
−n(x) +

∑
y∈S n(y). Roughly speaking, L(x,S) counts the

number of new boundary nodes with multiplicities when re-
placing x by all regions in S. If the children of x are x0 and
x1, Equation (1) implies

L(x, {x0, x1}) ≤ c
√

n(x). (5)

Fix r and let Sr be the set of nodes y of T such that y’s
region has no more than r vertices but the region of y’s
parent has more than r vertices. Note that no node in Sr is
an ancestor of any other. Let x̂ be the root of T .

Lemma 6 (Total Number of Boundary Vertices).

There are constants s and γ, depending on c, such that, for
any r > s, L(x̂, Sr) ≤ γN√

r
.

The proof of Lemma 6, which is included in the full version
of this paper, is an adaptation of Frederickson’s analysis.



Lemma 6 implies that
∑

x∈Sr
n(x) is O(N), since the re-

gions in Sr are disjoint except for boundary vertices, of which
there are at most O(N/

√
r). For each parent y of a node

x ∈ Sr, the corresponding region Ry has more than r ver-
tices, so the number of such parents is O(N/r), so |Sr| is
O(N/r). Let c′ be a constant to be determined. For a
node x, let S′

r(x) denote the set of rootmost descendants y
of x (where x is a descendant of itself) such that Ry has at
most c′

√
r boundary vertices. Let S′

r =
⋃

x∈Sr
{S′

r(x)}.

Lemma 7. The regions {Ry : y ∈ S′
r} form an r–

division with a constant number of holes per region.

The proof is also an adaptation of Frederickson’s argument.

4. A SIMPLE-CYCLE SEPARATOR ALGO-
RITHM

In this section we present our cycle separator algorithm.
As a one-shot algorithm, the input is a simple biconnected
graph G with m edges and face weights such that no face
weighs more than 3/4 the total weight and no face consists of
more than 3 edges. The algorithm outputs a simple cycle C
in G, such that neither the total weight strictly enclosed
by C nor the total weight not enclosed by C exceeds 3/4
of the total weight. The length of C is guaranteed to be
at most 4

√
|E(G)|. Since G is a simple graph, this implies

a bound of 4
√

3 |V (G)| on the length of the cycle. Better
constants can be achieved, at the cost of complicating the
algorithm and the analysis, which we avoid for the sake of
simplicity and ease of presentation. In a similar manner, we
aim for 3/4–balance to simplify the presentation. A balance
of 2/3 can be achieved.

The cycle separator algorithm consists of a preprocessing
step, which runs in linear time and computes certain aux-
iliary data structures used by the main procedure, Simple-

CycleSeparator, which performs the computation. These
data structures can be represented so that SimpleCycle-

Separator takes sublinear time. One auxiliary data struc-
ture is a tree K, which is called the component tree. The
tree K captures the structural connectivity of dual BFS com-
ponents of G. The dual BFS components satisfy a certain
disjointness property (see Lemma 9). The other auxiliary
data structures are a spanning tree T of G and its cotree T ∗.
The spanning tree T satisfies a certain monotonicity prop-
erty (see Lemma 10). The disjointness and monotonicity
properties guarantee that the length of the cycle separator
output by SimpleCycleSeparator is 4

√
|E(G)|.

Our algorithm for constructing the decomposition tree T
invokes SimpleCycleSeparator multiple times, on vari-
ous regions of Ḡ. It computes the auxiliary data structures
K, T , and T ∗ once, for the input graph Ḡ, and efficiently up-
dates their representation when separating a region into two
regions. However, the disjointness and monotonicity proper-
ties mentioned above are slightly weaker (see Invariant 1 and
Invariant 2); they only apply to natural edges (disjointness)
and to natural vertices (monotonicity). One implication is
that the number of natural vertices on the cycle separator C
produced by SimpleCycleSeparator is bounded in terms
of the (square root of the) number of natural vertices in the
input graph. However, the cycle C might also include some
artificial vertices. As argued in Section 3, artificial nodes
on C do not affect the analysis.

4.1 Levels and Level Components
We define levels with respect to an arbitrarily chosen face

f∞, which we designate as the infinite face.

Definition 10. The level �F (f) of a face f is the minimum
number of edges on a f∞–to–f–path in G∗. We use LF

i to
denote the faces having level i, and we use LF

�i denote the
set of faces f having level at least i.

Definition 11. For an integer i ≥ 0, a connected compo-
nent of the subgraph of G∗ induced by LF

�i is called a level-i
component, or, for unspecified i, a level component. We use
K�i to denote the set of level-i components. A level-i com-
ponent K is said to have level i, and we denote its level
by �K(K). A non-root level component is a level component
whose level is not zero. The set of vertices of G∗ (faces of G)
belonging to K is denoted F (K).

Note that we use K (not K∗) to denote a level component
even though it is a connected component of a subgraph of
the planar dual. K should be thought of as a set of faces.
Thus we can refer to it as a subgraph of G∗ or of G. In the
former case K is the subgraph of G∗ induced by the faces in
the set K. In the latter case K is the subgraph of G induced
by the edges that belong to faces in the set K.

Lemma 8. For any non-root level component, the sub-
graph of G∗ consisting of vertices of G∗ not in F (K) is
connected.

Corollary 1. For any non-root level component K, the
edges of δG∗(F (K)) form a simple cycle in the primal G.

In view of Corollary 1, for any non-root level compo-
nent K, we use X(K) to denote the simple cycle in the
primal G consisting of the edges of δG∗(F (K)). We refer to
X(K) as the bounding cycle of K since, when viewed as a
subgraph of G, K is exactly the subgraph enclosed by X(K).

Lemma 9. Let K and K′ be two distinct components.
X(K) and X(K′) are edge-disjoint.

Proof. Let i be the level of K. The edges of X(K) are
edges of δG∗(F (K)). Therefore, as edges of G∗, they have
one endpoint in K and one in a level-(i− 1) face. If an edge
of δG∗(F (K′)) has an endpoint in K then K �= K′ implies
the level of K′ is at least i + 1, so it cannot be an edge of
X(K). If, on the other hand, an edge of δG∗ (F (K′)) has
an endpoint in level i − 1 then K �= K′ implies the other
endpoint is not in K.

Definition 12. The component tree K is the rooted tree
whose nodes are the level components and in which K is an
ancestor of K′ if the faces of K include the faces of K′.

The root of the component tree is the unique level-0 com-
ponent consisting of all of G∗.

Definition 13. An edge ff ′ of G∗ has level i if f has
level (i − 1) and f ′ has level i. We write �E(ff ′) for the
level of ff ′. We use LE

i to denote the set of edges of level i.

Note that not every edge of G∗ is assigned a level.

Definition 14. Let LV
i denote the set of vertices of the

primal graph G that are endpoints in the primal graph G of
edges in LE

i .



Note that a vertex of G can be an endpoint of two edges at
different levels i and j, so LV

i and LV
j are not necessarily

disjoint.

Definition 15. The level �V (v) of a primal vertex v is de-
fined to be minf �

F (f) over all faces f incident to v.

Note that LV
i is not the set of vertices with level i.

4.2 The Primal Tree
The algorithm maintains a primal spanning tree T . We

start by describing the initial value of T and its properties.

Lemma 10. There exists a spanning tree T̄ such that, for
any vertex u, �V (parentT̄ (u)) < �V (u). T̄ can be computed
in linear time.

Proof. For a primal vertex u with �V (u) = i, let f be a
level-i face to which u is incident (ties are broken arbitrarily,
but consistently). Let v, w be the other two vertices of that
face f . The parent of u in T̄ , denoted by parentT̄ (u), is the
vertex in {v, w} with the smaller level (again, breaking ties
arbitrarily and consistently).

Since �V (u) = i, u is not incident to a level-(i − 1) face.
Hence both v and w must be adjacent to a level-(i− 1) face
f ′. Therefore, �V (parentT̄ (u)) ≤ i− 1 < �V (u) = i.

To complete the definition of T̄ , we choose an arbitrary
vertex r incident to f∞ to be the root of T̄ by assigning it
to be the parent of the two remaining vertices at level i = 0.
For convenience we set the level of the root vertex to −1.

4.3 The Preprocessing Step
To compute a simple cycle separator, one first computes

the component tree K, the spanning tree T , and its cotree
T ∗. This is done by the preprocessing step (Algorithm 2),
which runs in linear time.

Algorithm 2: Preprocessing(G)

1 choose an arbitrary face as f∞
2 compute face, edge, and vertex levels �F (·), �E(·), �V (·),

respectively
3 compute the component tree K
4 initialize T to be the tree T̄ as defined in Lemma 10
5 initialize T ∗ to be the cotree of T
6 return (K, T, T ∗)

The efficient implementation of RecursiveDivide, which
computes the decomposition tree T in linear time, recur-
sively separates regions of Ḡ. It maintains the component
tree K, spanning tree T , and cotree T ∗ of the currently han-
dled region R throughout the recursive calls. This is de-
scribed in Section 5. T is initialized to be the tree T̄ of Ḡ.
RecursiveDivide maintains the following invariants:

Invariant 1. Let K and K′ be two distinct components.
X(K) and X(K′) do not share natural edges.

Invariant 2. �V (v) < �V (u) for any two natural vertices
u and v of R such that v is a proper ancestor of u in T .

Since Ḡ has only natural vertices and edges, Lemma 9 and
Lemma 10 show that the invariants initially hold for R = Ḡ.

Algorithm 3: SimpleCycleSeparator(G), G is the tu-
ple (G,K, T, T ∗)

1 let m be the number of natural edges in G
2 let W := W (G)
3 compute e∗ to be the 3/4–balanced edge separator of T ∗

4 let e be the primal of e∗

5 let C̃ denote the fundamental cycle of e w.r.t. T

6 if C̃ has at most 4
√
m natural edges then return C̃

7 let l, h be the minimum and maximum level �V (v) of a

vertex v ∈ C̃
8 while l < h do /* binary search for i0 in [l, h) */

9 set all i0, i−, i+ to l + 	(h− l)/2

10 repeat /* sequential search for level i− < i0

with small boundary */

11 i− := i− − 1; let K− be the unique component

at level i− that C̃ intersects

12 until i0 < l or X(K−) has at most
√
m natural

edges
13 if W (G \K−) > 3W/4 then h := i−; continue
14 repeat /* sequential search for level i+ > i0

with small boundary */

15 i+ := i+ + 1; let K+ be the unique component of

level i+ that C̃ intersects

16 until i+ > h or X(K+) has at most
√
m natural

edges
17 if W (K+) > 3W/4 then l := i+; continue
18 let G′ be the graph induced on G by

X(K−) ∪X(K+) ∪
(
C̃ ∩ (K− −K+)

)

19 return GreedyCycleSeparator(G′)
20 end

4.4 Computing a Simple Cycle Separator
We first provide an intuitive description of the separator

algorithm SimpleCycleSeparator (Algorithm 3). Let m
denote the number of natural edges in G.

1. The algorithm computes a balanced fundamental cy-
cle C̃ (Lines 3–5). If C̃ consists of fewer than 4

√
m

natural edges, then C̃ is a short balanced simple-cycle
separator.

2. Otherwise, the fact that C̃ is long implies that it inter-
sects components at many (more than 2

√
m) consec-

utive levels of the component tree K. (we say that C̃

intersects a component K if C̃ has at least one edge in
K −X(K) and at least one in G−K). The algorithm
performs a binary search procedure on the range [l, h),
where l, h are the minimum and maximum level �V (v)

of a vertex v ∈ C̃, respectively. At each step of the
binary search, we identify

• the median level i0 = 	(l + h)/2
,
• the highest-level component K− intersected by C̃,

whose level i− is smaller than i0 and whose bound-
ing cycle X(K−) has few (at most

√
m) natural

edges, and

• the lowest-level component K+ intersected by C̃,
whose level i+ is at least i0 and whose bounding
cycle X(K+) has few natural edges.



The monotonicity of the primal tree T implies that the
number of natural edges of C̃ between levels i− and i+
(that is, the number of edges of C̃ in K− −K+) is at
most 2

√
m (see Lemma 13).

3. If W (G−K−) > 3W/4 we continue the binary search
on the range [l, i−). Similarly, if W (K+) > 3W/4 we
continue the binary search on the range [i+, h).

4. Otherwise, the graph G′ induced by the edges of X(K−),

X(K+), and the edges of C̃ in K− − K+ is a bi-
connected planar graph with at most 4

√
m natural

edges, none of whose faces weighs more than 3W/4.
See Figure 2. The algorithm uses a greedy procedure,
GreedyCycleSeparator, to output a balanced sim-
ple cycle separator in G′ in O(

√
m) time.

The pseudocode of SimpleCycleSeparator is given in
Algorithm 3. To avoid clutter, the pseudocode does not han-
dle the boundary case where the loop in line 11 terminates
without finding a level K− with |X(K−)| <

√
m. In this

case there is no need to shortcut C̃ at a small level. Specifi-
cally, C̃ is entirely enclosed by K−, the condition in line 13
is considered false, and X(K−) is considered to be an empty
set of edges. A similar statement applies to K+.

Lemma 11. The components K− and K+ defined in Lines
11 and 15 are well defined.

Proof. Since l ≤ i− ≤ h, the cycle C̃ must intersect
some component at level i−. The monotonicity of the tree T
implies that once a rootward path leaves a component at
some level it never enters any component at that level again.
The lemma follows since C̃ is comprised of two rootward
paths plus one edge.

Lemma 12. For l ≤ i ≤ h, let Ki be the unique com-
ponent at level i that is intersected by C̃. If the weight not
enclosed by K− is greater than 3W/4 then there exists a level
l ≤ i0 < i− such that the weight not enclosed by any Ki with
l ≤ i ≤ i0 is at most 3W/4, and such that the weight enclosed
by any Ki with i0 < i ≤ h is at most 3W/4.

Proof. Let Kl be the unique level-l component that en-
closes C̃. Since C̃ is a balanced separator, the weight en-
closed by Kl is at least W/4. Hence the weight not enclosed

by Kl is at most 3W/4. Let K̃ be the component with

maximum level that is intersected by C̃ and whose enclosed
weight is at least W/4. Let i0 be the level of K̃. By the
above argument l ≤ i0, and since the weight not enclosed
by K− is greater than 3W/4, i0 < i−. By choice of i0,
any Ki with i0 < i ≤ h encloses at most W/4 weight.

A symmetric lemma applies to the case where the weight
enclosed by K+ is greater than 3W/4. These lemmas show
that, if l or h are updated (i.e., the binary search continues),
there exists some level i0 in the new search range for which
both conditions in Lines 13 and 17 are false, and hence the
binary search procedure must eventually terminate.

Lemma 13. Let G be a biconnected plane graph G with m
natural edges and face weights such that no face weighs more
than 3/4 the total weight and such that no face consists of
more than 3 edges. The procedure SimpleCycleSeparator

finds a 3/4–balanced simple cycle separator in G with at most
4
√
m natural vertices.

X(K-)

X(K+)

Figure 2: Illustration of the cycle separator algo-
rithm: the fundamental cycle C̃ is shown in thick
red (solid and dashed). The level cycles X(K−) and
X(K+) are indicated. The component K+ is shaded

yellow. G′ is the graph consisting of the edges of C̃
that belong to K− −K+ (solid thick red) as well as
the edges of the cycles X(K−) and X(K+) (black).

Proof. Since G has face size at most 3, the fundamen-
tal cycle C̃ is a 3/4–balanced simple cycle separator. If it
consists of fewer than 4

√
m natural edges it is returned in

Line 5. Otherwise, the lemma follows from the correctness
of GreedyCycleSeparator (Lemma 14), provided that
we show that G′ is a biconnected subgraph of G with 4

√
m

natural edges, none of whose faces weighs more than 3W/4.
We assume that both K− and K+ exist. The cases where
one of them or both do not exist are similar. Consider the
cycles X(K−), X(K+), and C̃. Since C̃ intersects both K−
and K+, G′ is biconnected. See Figure 2 for an illustration.

To establish the bound on the number of edges in G′,
note that, by choice of X(K−) and X(K+), they consist of
fewer than

√
m natural edges each. It remains to bound

|C̃ ∩ (K− −K+)|, which consists of two paths in T between
X(K+) and X(K−). We claim that i+ − i− ≤

√
m. To

see this, observe that by definition of i− and i+, for every
level i− < i < i+, the bounding cycle of the unique level-
i component intersected by C̃ consists of more than

√
m

natural edges. Since bounding cycles do not share natural
edges (Invariant 1) and since there are m natural edges in G,
it must be that i+ − i− − 1 <

√
m. Combining this with

Invariant 2, we conclude that |C̃ ∩ (K− − K+)| consists of
at most 2

√
m natural vertices.

As for the face weights, the weight of a face f ′ of G′ is
the total weight of the faces of G that are enclosed in G by
the cycle formed by the edges of f ′. The faces of G′ that
correspond to the exterior of X(K−) and to the interior
of X(K+) have weight at most 3W/4 by the conditions in
Lines 13 and 17. All of the other faces of G′ are either
enclosed (in G) by C̃ or not enclosed by C̃. Therefore, the

weight of each of these faces is at most 3W/4 since C̃ is a
balanced separator.

Since any simple plane graph has at most three times as
many edges as vertices, and since triangulating and making
biconnected any plane graph G requires O(|V (G)|) edges,
we can restate Lemma 13 in a more general form that does
not distinguish natural and artificial vertices.



Corollary 2. Let G be a simple biconnected plane graph
with face weights such that no face weighs more than 3/4
the total weight, and such that no face consists of more than
3 edges. There exists a constant c such that the procedure
SimpleCycleSeparator finds a 3/4–balanced simple cycle

separator in G whose length is at most c
√
|V (G)|.

The properties of the procedure GreedyCycleSepara-

tor are summarized in the following lemma. See the full
version for a description of this greedy algorithm.

Lemma 14. Let G be a biconnected planar graph with m
edges and face weights summing to W such that no face
weighs more than 3W/4. There exists an O(m) algorithm
that finds a balanced simple-cycle separator in G.

4.5 Efficient Implementation
It is fairly straightforward to implement SimpleCycle-

Separator in linear time. In this subsection we describe
the data structures that support implementing SimpleCy-

cleSeparator in sublinear time. Our preprocessing proce-
dure initializes the tree T to be the tree T̄ (Lemma 10), the
cotree T ∗ to be the spanning tree of Ḡ∗, rooted at f∞, whose
edges are those not in T . T is represented using an Euler
tour tree [24]. T ∗ is represented using a dynamic tree [46,
15, 50]. The procedure also computes the component tree
K and all level cycles in G. The component tree can be rep-
resented by parent pointers. Level cycles are represented by
splay trees [47]. For every edge e in Ḡ, let PK(e) be the path
in K that consists of all components K such that e has one
endpoint in X(K) and another endpoint strictly enclosed by
X(K). We maintain these paths by storing the first and last
components of PK(e) in an array entry R(e). This array can
be generated in linear time in the preprocessing step.

The full version of the paper describes how this repre-
sentation allows each required operation to be supported
efficiently. Roughly speaking, each basic operation takes
O(log |E(G)|) amortized time. For example, finding a bal-
anced edge separator in T ∗ (Line 3) is done using a dynamic-
tree operation that returns a leafmost edge whose subtree
has total weight at least W/4. It requires O(log |E(G)|)
amortized time. Another example is finding the levels l and
h in Line 7. This is done using the array R (which is also used
for updatind the representation of level cycles in Section 5).

There are O(log |E(G)|) iterations of the binary search in
SimpleCycleSeparator. By the arguments in Lemma 13,
each iteration scans through O(

√
|E(G)|) levels, performing

a constant number of basic operations per level. There-
fore, assuming that the auxiliary data structures are given
in the representation described above, SimpleCycleSepa-

rator can be implemented in O(
√
|E(G)| log2 |E(G)|) time.

5. MAINTAINING THE REPRESENTATION
OF REGIONS EFFICIENTLY

To be able to establish the linear running time of the algo-
rithm claimed in Theorem 3, it remains to describe how to
maintain the auxiliary data structures that represent the re-
gions and are required by SimpleCycleSeparator through-
out the recursive calls to RecursiveDivide. These include
maintaining the embedding of regions, the primal spanning
tree T with its monotonicity invariant (Invariant 2), the
cotree T ∗, the component tree, and the level cycles with
their disjointness invariant (Invariant 1).

Consider an iteration of RecursiveDivide in which a re-
gion R is partitioned into two regions R0 and R1 along a
cycle separator C. Note that, due to the recursive nature
of the algorithm, we may assume that first the representa-
tions for R0 are obtained and the algorithm is invoked recur-
sively on R0. After the recursive call for R0 is completed, all
changes are undone, and the representations for R1 are ob-
tained. To achieve linear time for computing an r–division,
it is required that the update be done in sublinear time in the
size of R. Essentially, the representation can be updated by
performing only local operations on the vertices and edges of
the separator C. This results in sublinear running time since
C consists of O(

√
|R|) edges, and since each operation in

the data structures we use takes O(log |R|) amortized time.
The details appear in the full version. Since the cycle can be
computed in O(

√
|R| log2 |R|), as established in Section 4.5,

the total running time of the algorithm is linear.
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