
On Balanced Separators in Road Networks

Aaron Schild1 and Christian Sommer2

1 UC Berkeley aschild@berkeley.edu
2 Apple Inc. csommer@apple.com

Abstract. The following algorithm partitions road networks surpris-
ingly well: (i) sort the vertices by longitude (or latitude, or some linear
combination) and (ii) compute the maximum flow from the first k nodes
(forming the source) to the last k nodes (forming the sink). Return the
corresponding minimum cut as an edge separator (or recurse until the
resulting subgraphs are sufficiently small).

1 Introduction

Graph Partitioning is the well-studied problem of cutting a graph into disjoint re-
gions of approximately equal size while minimizing the number of edges between
regions. An example partition of a road network is shown as Fig. 1.

Fig. 1. Recursive bisection using our separator algorithm Inertial Flow (with bal-
ance 1/4) for the road network of the United States (24M nodes, 29M edges) into
27 regions by cutting a total of 1,413 edges (0.005%). The largest region contains less
than 6% of the original graph.

Delling, Goldberg, Razenshteyn, and Werneck [DGRW11] discovered that
road networks have remarkably small separators. Prior to our work, their patented
method called PUNCH appeared to be the only one capable of efficiently comput-
ing these separators (Buffoon [SS12], another high-quality partitioner for road
networks, uses PUNCH as a subroutine).

1.1 Problem Statement

Given a graph G = (V,E), a Graph Partition is a partition of the vertex set V
into disjoint subsets V0, V1, . . . Vk−1 such that the regions (Vi, Ei) (subgraph
induced by Vi) are of roughly equal size, and for all Vi, Vj (i 6= j) the set of
edges between Vi and Vj (denoted by E(Vi, Vj)) is as small as possible. A main
challenge of graph partitioning is the combined objective of minimizing the cut
size while keeping good balance. Various objective functions combine the two
quantities. Problem variants include balanced k–partitioning, where partitions
must satisfy ∀i : |Vi| 6 (1 + ε) |V | /k for some imbalance parameter ε > 0, or
the relaxed (and significantly easier) variant, where only ∀i : |Vi| 6 r for some
region size constraint r (as considered in this paper).

One way of obtaining such a partition is by cutting G into two pieces V0, V1

and then recursing on each subgraph V0, V1. The recursion ends when the result-
ing subgraphs are sufficiently small. For these bisections, there are also various
objective functions.

Definition 1 (Cuts and Balanced Cuts). Given a graph G = (V,E), a cut
is a partition of V into two disjoint subsets V0, V1. A b–balanced cut (for any
0 < b 6 1/2) is a cut such that |Vi| > bb · |V |c for both i ∈ {0, 1}.

At each level of the recursion, the objective is to find a b–balanced cut (for
some b, say b = 1/4) that minimizes the number of cut edges, i.e. min |E(V0, V1)|,
where E(V0, V1) := {(u, v) ∈ E : u ∈ V0, v ∈ V1}.

Other well-known objective functions for cuts include the minimum st cut
and the sparsest cut. A minimum st cut is a cut minimizing |E(V0, V1)| with
the condition that s and t are separated, i.e., s ∈ V0 and t ∈ V1 (no balance
requirements). It can be found efficiently using maximum flow algorithms [GR98,
BK04, GHK+11, Mad13]. A sparsest cut is a cut minimizing |E(V0, V1)| /(|V0| ·
|V1|). Sparsest cuts are hard even to approximate [KV05, CKK+06].

1.2 Related Work

Theory. Various approximation algorithms for sparsest cut use maximum flow
computations [KRV09, AK07, OSVV08, She09]. Roughly speaking, these algo-
rithms iteratively refine an embedding of V by choosing source s and sink t at ex-
tremal points (of the embedding), computing st flow, followed by re-arranging V .
A simplified statement of these results is that a poly-logarithmic number of
carefully chosen maximum-flow computations provides a logarithmic approxi-
mation for sparsest cut (details in the corresponding papers). Previously, Lang
and Rao [LR04] and Andersen and Lang [AL08] also showed how to improve
cuts using maximum flow. Bui, Chaudhuri, Leighton, and Sipser [BCLS87] used
maximum flow to compute bisections of regular graphs.

Some graphs are guaranteed to have small balanced cuts. For example, any
planar, bounded-genus, or minor-free graph on n nodes has a balanced separator
of size O(

√
n) [Ung51, LT79, Dji85, GHT84, And86, AST90], and recursive ap-

plication yields partitions [LT79, Fre87, HKRS97, vWZA13, KMS13]. Partitions
obtained by recursive bisection may be far from optimal though [ST97].

Practice. The literature on graph partitioning is vast, see e.g. [BMSW13, BMS+13]
and references therein. In this brief review, we focus on recent work on parti-
tioning road networks. Delling, Goldberg, Razenshteyn, and Werneck [DGRW11]
introduce PUNCH, which first computes candidate cuts using maximum flows
between sources and sinks chosen as follows: for a node v ∈ V , all nodes within
distance< r form the source, and all nodes at distance> R form the sink (for two
parameters r < R; distance can be measured in terms of BFS, shortest-path,
or rank distance). These candidate cuts are then aggregated in various ways
to form the final partition. Sanders and Schulz [SS11, SS12, SS13] contribute
KaFFPa[E] and KaHIP (following earlier partitioners such as Ka{SPar,PPA}),
all general-purpose partitioners, with a variant called Buffoon optimized for road
networks. Their methods are based on the multi-level graph partitioning frame-
work, where the input graph is first contracted, followed by a partitioning step
on the smaller graph, and a refinement step to obtain a partition of the original
graph. In KaFFPa, one of the refinement steps is called adaptive flow iterations,
which enforces a balance constraint and computes maximum flow with source
and sink chosen as BFS balls in two adjacent regions. Similar refinements using
maximum flows had also been used by Boykov, Veksler, and Zabih [BVZ01].

Applications. Road network partitions can be used for applications such as
shortest-path queries [Som14] or data distribution [KLSV10]. In particular, the
performance of separator-based shortest-path algorithms [Fre87, Dji96, HKRS97,
FR06, HSW08, DHM+09, KKS11, MS12, DGPW13] depends on the size of the
separator. Most prominently, Delling, Goldberg, Pajor, and Werneck [DGPW13]
recently demonstrated that separator-based methods built upon a quality parti-
tion (such as those described in their joint work with Razenshteyn [DGRW11])
are highly practical. Their method recursively partitions the graph into a multi-
level partition and then, for each region and level, precomputes matrices repre-
senting shortest-path costs between boundary nodes. For each region, memory
requirements are therefore proportional to the square of the number of boundary
nodes, which makes the quality of the partition particularly important. Partition-
ing is the most time-consuming step in their preprocessing algorithm (approxi-
mately 10 minutes to compute a multi-level partition for the US road network).
Dibbelt, Strasser, and Wagner [DSW14] compute metric-independent Contrac-
tion Hierarchies based on nested dissection, which in turn is based on recursive
bisection (corresponding theory in [BCRW13]). Finding good bisections is the
most time-consuming step in their preprocessing algorithm.

1.3 Contribution

Our main contribution is a simple and efficient method to find sparse balanced
cuts in embedded graphs such as road networks. The method, which we call
Inertial Flow, uses the embedding, initially sorts nodes geometrically (like the
well-known Inertial Partitioning), and then computes a maximum flow. The
corresponding minimum cut is used as the separator. Inertial Flow is straight-
forward to implement, yet its partitions are reasonably good. Our experiments

using such a straightforward implementation demonstrate that it is competi-
tive with the state-of-the-art partitioner PUNCH [DGRW11]. If the Natural Cut
Heuristic is interpreted as the heart of PUNCH then the objective of this paper
is to describe a new heart, and not the effects of its transplantation. We specu-
late that, in combination with the assembly phase of PUNCH or Buffoon [SS12],
partitions might improve further (particularly in terms of balance).

In addition to simplicity, another advantage of recursive bisection is that,
after computing the separator tree once, it contains the information for an entire
multi-level partition (see e.g. [KMS13]).

As discussed in the section on related work, various partitioners employ a
maximum-flow algorithm as an important subroutine. Their main differentiator
is the choice of source and sink. On one hand, when terminals consist of too
few nodes, minimum cuts may be highly unbalanced. On the other hand, when
terminals consist of too many nodes, the best cuts may be violated by the ini-
tial source/sink assignment. Many methods use BFS balls to assign terminals,
where the choice of radii is particularly delicate: obviously, balls must not inter-
sect, but they should also be reasonably far apart. Such kind of tuning is fairly
straightforward for our method, as there is just the balance parameter b to be
configured. State-of-the-art theoretical algorithms for sparsest cut first embed
the graph and then refine using maximum flow. The main observation leading
to our method is that a road network’s embedding (which is typically provided
as part of the input) may be sufficiently good to serve as the initial embedding
in an analogous algorithm.

2 Inertial Flow

We present an efficient heuristic to find b–balanced cuts in road networks. For
the sake of exposition, let us consider a simplified road network, defined as an
undirected graph G = (V,E) with an embedding f : V ↪→ R2. We may assume
that G is connected, as typically partitioning algorithms are applied to each
connected component independently. Our method is rather simple as it merely
applies two standard primitives: sorting and maximum flow. (The well-known
Inertial Partitioning uses sorting, followed by sweeping, hence the name of our
method.)

1. Pick a line ` ∈ R2 and orthogonally project V onto `
(more precisely, for each vertex v, project its point in the embedding f(v)
onto `).

2. Sort V by order of appearance on ` (ties broken arbitrarily but consistently).
3. Let the first bb · |V |c vertices (in projection order) be the source s, and

let the last bb · |V |c vertices be the sink t.
4. Compute a maximum flow between source s and sink t.
5. Return a corresponding minimum st cut.

Key Properties

– By choice of s and t, all minimum st cuts are b–balanced.
– The running time is bounded by the time required to sort V plus the time

required to compute one maximum flow inG. Computing the entire separator
tree (recursive bisection) requires time proportional to sort plus log1/(1−b) |V |
times flow.

– A basic implementation using standard libraries is straightforward.

Choice of `

The quality of the cut depends on the line ` ∈ R2 chosen in the first step
of the algorithm. Obvious choices include random lines as well as simple fixed
directions such as horizontal, vertical, or diagonal. A natural heuristic is then
to try multiple lines and increasing balance values and return the best cut (for
some objective function that may involve balance and cut size).

Let us demonstrate the effect of ` on the cut using the road network of New
York3 as an example. The cut sizes range from 5 (best) to 44 edges (see Fig. 2).
The choice of source and sink forces the cut to be in a corridor that, for b = 1/4,
contains half the graph. If the source/sink assignment violates a sparse cut and
the corridor is relatively dense, then Inertial Flow finds a suboptimal cut.

Fig. 2. The road network of New York (264K nodes) cut with balance 1/4 and four
different line values. From left to right: horizontal (5 edges cut), vertical (44 edges
cut), and diagonal (35 and 25 edges cut, respectively). Inertial Flow using horizontal
sorting provides the best cut, both visually (along the Hudson) as well as in terms of
the number of cut edges. The other sort orders yield comparatively large cuts as the
minimum balance criterion forces unfortunate source/sink assignments violating the
Hudson cut. Note that, compared to a typical worst-case guarantee on the order of√

n ≈ 514, all cuts are smaller by at least an order of magnitude.

3 The NY network contains 264K nodes and 734K arcs (interpreted as 367K undirected
edges). All US road networks used for experiments in this paper can be downloaded
from http://www.dis.uniroma1.it/challenge9/download.shtml

3 Experiments

3.1 Setup

The main datasets we consider are the road networks of the United States and
Europe, respectively. The USA graph (as used for the 9th DIMACS Implemen-
tation Challenge on Shortest Paths [DGJ08]) has 24M nodes and 58M directed
arcs, which are typically interpreted as 29M undirected edges. The EUR graph
(as made available by PTV AG, and also used in [DGJ08]) has 18M nodes and
21M edges (42M arcs).

The method used for comparison is PUNCH [DGRW11]. Note that PUNCH
does not read the embedding, so Inertial Flow is given an unfair advantage. A
main convenience of Inertial Flow as compared to PUNCH (and Buffoon [SS12])
is that it is straightforward to implement.

Our experiments are meant as a proof of concept, and we use a vanilla im-
plementation (in C++) without any additional heuristics. For this paper, our
focus is not on running times, and we also refrain from tuning parameters to
experimental data. Unless indicated otherwise, balance is set to 1/4, the lines are
chosen to be horizontal, vertical, and diagonal (` ∈ {(1, 0), (0, 1), (1, 1), (−1, 1)}),
and the objective function is simply to minimize the number of cut edges. The
main subroutines employed are std::sort and maximum flow using Dinic’s al-
gorithm (augmenting paths, in the unit-capacity case computed by breadth-first
search) [Din70]. Our implementation is parallel in the most obvious ways: sepa-
rators for each line ` are computed by separate threads (with cross-notification
of minimum cut upper bounds), and recursive calls are handled by a thread pool.
For recursive bisections, we run 16 threads on two 2.20GHz Intel Xeon CPUs
with 8 cores each. We encourage interested readers to combine Inertial Flow
with other heuristics and/or to write more efficient implementations.

3.2 Results

Graph size vs. separator size and boundary size. Worst-case bounds for planar
graphs on n nodes (and more general graph classes) guarantee the existence of
a 1/3–balanced cut/separator of size O(

√
n) [LT79]. Recursive separation yields

a partition into O(n/r) regions of size 6 r with total boundary size O(n/
√
r).

With some more work one can obtain an r–division [Fre87], where each region has
worst-case boundary O(

√
r). Road networks appear to have significantly smaller

separators: Delling, Goldberg, Razenshteyn, and Werneck [DGRW11] compare
the average boundary size to 3

√
r instead (confirmed later by Dibbelt, Strasser,

and Wagner [DSW14]). We provide plots for region size vs. total boundary size
in Fig. 3. For specific numbers on region size vs. total boundary size, see Table 1
and Table 2.

Running Time. As mentioned above, our main focus is not on running time.
Our implementation computes multi-level partitions for USA and EUR in minutes.
Specific numbers are provided in Tables 1, 2, and 3. Note that, as expected, the

initial cuts on the largest graphs are the most expensive ones. Subsequent cuts
operate on smaller graphs and, by maintaining nodes in sorted order(s), do not
require sorting the nodes again. For example, cutting USA into 2 regions requires
81 seconds (Table 3, b = 1/4). Recursive bisection into 6K regions takes only
roughly twice as long (165.8 seconds, Table 2). Using this recursive bisection tree,
reading off an entire multi-level partition is straightforward (see e.g. [KMS13]).
By contrast, the Natural Cut Heuristic of PUNCH [DGRW11] depends on the
target region size and is run separately for each level.

3.3 Comparison

Comparing partitions is not straightforward [BMS+14]. We compare against
various partitions reported for PUNCH in Table 1 and observe that PUNCH
partitions are significantly more balanced. For example, when partitioning USA
into 27 regions as in Fig. 1, Inertial Flow cuts 1,413 edges with maximum region
size 1.4M, while PUNCH cuts only 1,404 edges and obtains maximum region size
1M (220). While recursive bisection with Inertial Flow typically uses around 50%
more regions than a perfectly balanced partition, PUNCH reportedly needs only
about 15% more regions. For most partition granularities, the average numbers
of cut edges per region are comparable.

We also compare our bisections against the optimal ones, obtained by an
efficient algorithm of Delling, Fleischman, Goldberg, Razenshteyn, and Wer-
neck [DFG+14]. Their algorithm guarantees optimal bisections for fairly large
graphs, so comparing our method without any guarantees on optimality (only
balance and running time have worst-case bounds) against their algorithm is
not fair. However, we believe that the value of an optimal bisection adds an
interesting perspective on cut quality (see Table 3).

Let us restate that the main advantage of Inertial Flow over PUNCH is
simplicity. Another advantage is that multi-level partitions can be computed
faster. As cut sizes are comparable, these advantages come at the cost of worse
balance. Depending on the application, if better balance is required, a post-
processing step (as in PUNCH or Buffoon) may further improve partitions.

Acknowledgments

Thanks to Ramana Idury for interesting discussions as well as contributions to
the experimental framework. Thanks also to Daniel Delling and the anonymous
reviewers for their feedback on earlier versions of this paper.

Graph
PUNCH Inertial Flow, fixed r Inertial Flow, target regions

r regions boundary time regions boundary time r boundary time

Europe

1,024 20,129 168,767 79.7 27,129 208,280 209.5 1,378 171,064 216.0
4,096 5,000 69,304 62.5 6,808 84,291 211.0 5,536 69,016 204.5

16,384 1,248 28,448 61.6 1,708 34,839 214.0 22,367 28,236 194.7
65,536 314 11,403 80.5 431 14,054 218.4 88,856 11,317 199.3

262,144 81 4,194 106.1 106 5,275 210.5 349,449 4,246 209.2
1,048,576 22 1,464 147.9 28 2,036 213.9 1,299,633 1,694 202.8
4,194,304 6 371 196.6 7 573 176.3 4,861,623 461 171.8

USA

1,024 26,725 222,636 104.6 36,267 274,756 246.9 1,389 223,531 186.6
4,096 6,643 87,762 79.9 9,000 107,170 173.2 5,570 87,193 181.8

16,384 1,661 34,345 75.0 2,233 41,782 157.7 22,310 34,138 172.0
65,536 418 12,767 89.9 563 15,862 166.0 87,960 12,971 168.5

262,144 109 4,556 103.3 140 5,578 163.0 336,843 4,557 166.6
1,048,576 27 1,504 117.6 33 1,716 148.5 1,407,053 1,413 148.3
4,194,304 7 383 138.7 8 478 128.4 4,338,122 388 128.7

Table 1. An attempt at comparing partitions obtained by PUNCH and recursive bi-
section using Inertial Flow. Values for PUNCH were extracted from [DGRW11, Table 1
(average values)]. Each PUNCH average is compared to two Inertial Flow partitions:
a partition with the same region-size constraint r, and a partition with the same num-
ber of regions. Center: when computing a partition with the same upper bounds for
the maximum region size r, PUNCH requires fewer regions; the average number of
cut edges per region is comparable. Right: when computing a partition with the same
number of regions, the two partitioners cut a similar number of edges (with some
PUNCH boundaries slightly smaller, particularly for Europe, and partitions more bal-
anced). The running times for PUNCH are fairly uniform; for recursive bisection, the
smaller r, the longer the computation. Note that a recursive bisection tree with regions
of size at most r also contains a partition for any r′ > r (enabling plots like Fig. 3
with thousands of r values), hence it also contains multi-level partitions. Using the
USA values in this table as an example, Inertial Flow simultaneously computes all
14 partitions (r = 4,338,122 through 210) in 4.1 minutes.

●●
●●●

●●●
●●●

●●
●●
●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●
●●●●●●●

●
●●●
●
●●●

●●●
●●●●●

●●
●●●●●
●●

●●
●●●●

●●●
●●

●
●●●
●●●

●●
●

●

●

●●
●

●
●

●

●

●
●

●

1000 5000 20000

14
16

18
20

22
24

26

Maximum Cell Size (edges)

A
ve

ra
ge

 C
ut

 S
iz

e
(e

dg
es

)

●●
●●

●●●
●●●

●●●
●●

●●
●●●
●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●
●●
●●●
●●●
●●
●●●●●●●●

●●
●●●●
●●
●●
●
●●
●●
●●

●
●●●●●●

●●
●
●●
●
●●●

●●●
●
●

●●●

●●

●●
●

●

●
●● ●

5000 20000 100000 500000

20
25

30
35

40

Maximum Cell Size (edges)

A
ve

ra
ge

 C
ut

 S
iz

e
(e

dg
es

)

●●
●●

●●●
●●

●●●
●●●

●●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●

●●●●
●●●●●●●●●

●●
●●
●●●
●●●●
●●

●
●●●

●●●
●●
●
●●

●
●
●
●●
●

●
●
●

●

●
●●

●

50000 200000 1000000

40
60

80
10

0
12

0

Maximum Cell Size (edges)

A
ve

ra
ge

 C
ut

 S
iz

e
(e

dg
es

)

Fig. 3. Average boundary sizes for partitions with various maximum region sizes r
(number of edges, logarithmic scale) for the BAY, CAL, and USA road networks, respec-
tively. Worst-case results (such as those for planar graphs) guarantee average boundary
sizes proportional to r1/2. Delling, Goldberg, Razenshteyn, and Werneck [DGRW11]
compare the average boundary size to r1/3.

CAL |V | = 1.89M USA |V | = 23.9M EUR |V | = 18.0M
d|V | /re regions boundary time regions boundary time regions boundary time

2 3 53 3.3 3 140 121.9 3 276 106.2
4 6 103 4.6 6 324 114.7 7 573 135.5
8 12 215 5.8 12 648 125.9 13 1,058 157.8

16 25 441 5.6 24 1,223 120.1 26 1,867 164.3
64 99 1,437 6.0 96 4,234 165.7 98 4,990 169.2

256 387 4,418 6.3 397 12,482 141.5 399 13,280 172.2
1,024 1,561 12,957 6.1 1,593 33,197 145.5 1,592 33,228 170.5
4,096 6,326 36,129 6.9 6,307 84,274 165.8 6,321 80,332 174.7

16,384 25,543 98,232 11.1 25,401 216,078 188.6 25,208 198,433 175.3

Table 2. Recursive bisection using Inertial Flow (balance 1/4) on the road networks of
California and Nevada (CAL), the United States (USA), and Europe (EUR), respectively,
for various values of granularity (maximum region size r). Total region boundaries
(cut sizes) reported correspond to the number of edges. Note that these partitions
typically have around 50% more regions than necessary due to imperfect balance.
Time (in seconds) corresponds to the time of recursive bisection (in particular, reading
the graph and its embedding from disk is not included) as required by 16 threads (one
bisection occupies 4 threads, one per slope). The variance in running times is rather
substantial: even though we report the median among 11 consecutive runs, that median
running time, e.g., for USA with d|V | /re = 64 is slower than that for 1,024 even though
only a relatively small subset of cuts is computed. The initial cuts of comparably large
(sub-)graphs are the most expensive ones.

Perfect b = 2/5 b = 1/3 b = 1/4 b = 1/5
Graph |V | Cut Time Cut Bal. Time Cut Bal. Time Cut Bal. Time Cut Bal. Time

NY 264K 18 381 40 0.48 0.1 5 0.43 0.1 5 0.43 0.1 5 0.43 0.1
BAY 321K 18 248 28 0.48 0.2 15 0.46 0.1 12 0.46 0.2 12 0.46 0.2
COL 436K 29 2,164 27 0.43 0.2 20 0.36 0.2 14 0.32 0.3 12 0.29 0.3
FLA 1.1M 25 1,640 28 0.42 0.6 22 0.40 0.7 17 0.29 0.9 15 0.27 1.0
NW 1.2M 18 463 24 0.49 0.7 17 0.50 0.6 17 0.50 0.7 17 0.50 0.9
NE 1.5M 24 751 20 0.49 1.3 20 0.49 1.4 20 0.49 1.7 20 0.49 2.3
CAL 1.9M 32 2,658 29 0.49 2.0 29 0.47 2.4 27 0.30 2.2 26 0.30 2.5
EUR 18M NA NA 229 0.46 69.3 201 0.45 95.3 188 0.45 124.9 95 0.30 81.4
USA 24M NA NA 61 0.48 58.3 61 0.48 63.9 61 0.48 81.2 61 0.48 84.3

Table 3. Bisection of various road networks: perfectly balanced bisections were ob-
tained by Delling, Fleischman, Goldberg, Razenshteyn, and Werneck [DFG+14, Ta-
ble 4]. The balance of bisections found by Inertial Flow depends on the slope and
the parameter b and there is no guarantee on optimality. In this table, for each
b ∈ {1/5, 1/4, 1/3, 2/5} we provide the minimum number of cut edges among 4 slopes.
Balance is reported as the number of nodes in the smaller subgraph divided by the
total number of nodes. As in Table 2, times reported are for the bisection (in seconds).
When b is close to 1/2, good balance is guaranteed, but cut sizes may be significantly
higher, see e.g. NY at 40 edges for b = 2/5, which is more than double the size of an
optimal bisection. When accepting worse balance, cuts may be substantially smaller.

References

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to
semidefinite programs. In 39th ACM Symposium on Theory of Computing
(STOC), pages 227–236, 2007.

[AL08] Reid Andersen and Kevin J. Lang. An algorithm for improving graph par-
titions. In 19th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 651–660, 2008.

[And86] Thomas Andreae. On a pursuit game played on graphs for which a minor is
excluded. Journal of Combinatorial Theory, Series B, 41(1):37–47, 1986.

[AST90] Noga Alon, Paul D. Seymour, and Robin Thomas. A separator theorem
for nonplanar graphs. Journal of the American Mathematical Society,
3(4):801–808, 1990. Announced at STOC 1990.

[BCLS87] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and
Michael Sipser. Graph bisection algorithms with good average case be-
havior. Combinatorica, 7(2):171–191, 1987. Announced at FOCS 1984.

[BCRW13] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wag-
ner. Search-space size in contraction hierarchies. In 40th International
Colloquium on Automata, Languages, and Programming (ICALP), pages
93–104, 2013.

[BK04] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–
1137, 2004. Announced at EMMCVPR 2001.

[BMS+13] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Chris-
tian Schulz. Recent advances in graph partitioning. arXiv, abs/1311.3144,
2013.

[BMS+14] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz,
Andrea Kappes, and Dorothea Wagner. Benchmarking for graph clus-
tering and partitioning. In Encyclopedia of Social Network Analysis and
Mining, pages 73–82. 2014.

[BMSW13] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wag-
ner, editors. Graph Partitioning and Graph Clustering — 10th DIMACS
Implementation Challenge Workshop, volume 588 of Contemporary Math-
ematics, 2013.

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(11):1222–1239, 2001. Announced at ICCV 1999.

[CKK+06] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and
D. Sivakumar. On the hardness of approximating multicut and sparsest-
cut. Computational Complexity, 15(2):94–114, 2006. Announced at CCC
2005.

[DFG+14] Daniel Delling, Daniel Fleischman, Andrew V. Goldberg, Ilya Razen-
shteyn, and Renato F. Werneck. An exact combinatorial algorithm for
minimum graph bisection. Mathematical Programming Series A, 2014.

[DGJ08] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. Imple-
mentation challenge for shortest paths. In Encyclopedia of Algorithms.
2008.

[DGPW13] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Wer-
neck. Customizable route planning in road networks. 2013. Announced
at SEA 2011 and SEA 2013.

[DGRW11] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato Fon-
seca F. Werneck. Graph partitioning with natural cuts. In 25th IEEE In-
ternational Symposium on Parallel and Distributed Processing (IPDPS),
pages 1135–1146, 2011.

[DHM+09] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea
Wagner. High-performance multi-level routing. In The Shortest Path
Problem: 9th DIMACS Implementation Challenge, volume 74, pages 73–
92. 2009.

[Din70] Efim Abramoviq Dinic. Algorithm for solution of a problem of maximum
flow in a network with power estimation. Doklady Akademii Nauk SSSR;
translation in Soviet Mathematics Doklady, 11(5):1277–1280, 1970.

[Dji85] Hristo Nikolov Djidjev. A linear algorithm for partitioning graphs of fixed
genus. Serdica. Bulgariacae mathematicae publicationes, 11(4):369–387,
1985.

[Dji96] Hristo Nikolov Djidjev. Efficient algorithms for shortest path problems
on planar digraphs. In 22nd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), pages 151–165, 1996.

[DSW14] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable con-
traction hierarchies. In 13th International Symposium on Experimental
Algorithms (SEA), pages 271–282, 2014.

[FR06] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight
edges, shortest paths, and near linear time. Journal of Computer and
System Sciences, 72(5):868–889, 2006. Announced at FOCS 2001.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16(6):1004–1022, 1987.

[GHK+11] Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Robert Endre Tarjan, and
Renato Fonseca F. Werneck. Maximum flows by incremental breadth-
first search. In 19th European Symposium on Algorithms (ESA), pages
457–468, 2011.

[GHT84] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separa-
tor theorem for graphs of bounded genus. Journal of Algorithms, 5(3):391–
407, 1984. Announced as TR82-506 in 1982.

[GR98] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition
barrier. Journal of the ACM, 45(5):783–797, 1998. Announced at FOCS
1997.

[HKRS97] Monika Rauch Henzinger, Philip Nathan Klein, Satish Rao, and Sairam
Subramanian. Faster shortest-path algorithms for planar graphs. Journal
of Computer and System Sciences, 55(1):3–23, 1997. Announced at STOC
1994.

[HSW08] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering multi-
level overlay graphs for shortest-path queries. ACM Journal of Experi-
mental Algorithmics, 13, 2008. Announced at ALENEX 2006.

[KKS11] Ken-ichi Kawarabayashi, Philip Nathan Klein, and Christian Sommer.
Linear-space approximate distance oracles for planar, bounded-genus, and
minor-free graphs. In 38th International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 135–146, 2011.

[KLSV10] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Dis-
tributed time-dependent contraction hierarchies. In 9th International
Symposium on Experimental Algorithms (SEA), pages 83–93, 2010.

[KMS13] Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive
separator decompositions for planar graphs in linear time. In 45th ACM
Symposium on Theory of Computing (STOC), pages 505–514, 2013.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph parti-
tioning using single commodity flows. Journal of the ACM, 56(4), 2009.
Announced at STOC 2006.

[KV05] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, in-
tegrality gap for cut problems and embeddability of negative type metrics
into `1. In 46th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 53–62, 2005.

[LR04] Kevin J. Lang and Satish Rao. A flow-based method for improving the
expansion or conductance of graph cuts. In 10th International Conference
on Integer Programming and Combinatorial Optimization (IPCO), pages
325–337, 2004.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for
planar graphs. SIAM Journal on Applied Mathematics, 36(2):177–189,
1979.

[Mad13] Aleksander Madry. Navigating central path with electrical flows: From
flows to matchings, and back. In 54th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 253–262, 2013.

[MS12] Shay Mozes and Christian Sommer. Exact distance oracles for planar
graphs. In 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 209–222, 2012.

[OSVV08] Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and
Nisheeth K. Vishnoi. On partitioning graphs via single commodity flows.
In 40th ACM Symposium on Theory of Computing (STOC), pages 461–
470, 2008.

[She09] Jonah Sherman. Breaking the multicommodity flow barrier for O(
√

log n)-
approximations to sparsest cut. In 50th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 363–372, 2009.

[Som14] Christian Sommer. Shortest-path queries in static networks. ACM Com-
puting Surveys, 46:45:1–31, 2014.

[SS11] Peter Sanders and Christian Schulz. Engineering multilevel graph parti-
tioning algorithms. In 19th European Symposium on Algorithms (ESA),
pages 469–480, 2011.

[SS12] Peter Sanders and Christian Schulz. Distributed evolutionary graph par-
titioning. In 14th Meeting on Algorithm Engineering & Experiments,
(ALENEX), pages 16–29, 2012.

[SS13] Peter Sanders and Christian Schulz. Think locally, act globally: Highly
balanced graph partitioning. In 12th International Symposium on Exper-
imental Algorithms (SEA), pages 164–175, 2013.

[ST97] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection?
SIAM Journal on Scientific Computing, 18:1436–1445, 1997.

[Ung51] Peter Ungar. A theorem on planar graphs. Journal of the London Math-
ematical Society, s1-26(4):256–262, 1951.

[vWZA13] Freek van Walderveen, Norbert Zeh, and Lars Arge. Multiway simple
cycle separators and I/O-efficient algorithms for planar graphs. In 24th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 901–918,
2013.

