
Exact Distance Oracles for Planar Graphs∗

Shay Mozes† Christian Sommer‡

Abstract
We present new and improved data structures that answer
exact node-to-node distance queries in planar graphs. Such
data structures are also known as distance oracles. For any
directed planar graph on n nodes with non-negative lengths
we obtain the following:1

• Given a desired space allocation S ∈ [n lg lgn, n2], we

show how to construct in Õ(S) time a data structure

of size O(S) that answers distance queries in Õ(n/
√
S)

time per query. The best distance oracles for planar
graphs until the current work are due to Cabello (SODA
2006), Chen and Xu (STOC 2000), Djidjev (WG 1996),
and Fakcharoenphol and Rao (FOCS 2001). For σ ∈
(1, 4/3) and space S = nσ, we essentially improve the

query time from n2/S to
p
n2/S.

• As a consequence, we obtain an improvement over the
fastest algorithm for k–many distances in planar graphs
whenever k ∈ [

√
n, n).

• We provide a linear-space exact distance oracle for pla-
nar graphs with query time O(n1/2+ε) for any constant
ε > 0. This is the first such data structure with prov-
able sublinear query time.

• For edge lengths ≥ 1, we provide an exact distance ora-
cle of space Õ(n) such that for any pair of nodes at dis-

tance ` the query time is Õ(min{`,
√
n}). Comparable

query performance had been observed experimentally
but could not be explained theoretically.

Our data structures with superlinear space are based on the
following new tool: given a non-self-crossing cycle C with
c = O(

√
n) nodes, we can preprocess G in Õ(n) time to

produce a data structure of size O(n lg lg c) that can answer

the following queries in Õ(c) time: for a query node u,
output the distance from u to all the nodes of C. This
data structure builds on and provides an alternative for a
related data structure of Klein (SODA 2005), which reports
distances to the boundary of a face, rather than a cycle.

1 Introduction.

A fast shortest-path query data structure may be of use
whenever an application needs to compute shortest-path
distances between some but not necessarily all pairs of

∗Work by SM partially supported by NSF Grant CCF-0964037
and by a Kanellakis fellowship. Work by CS partially supported

by the Swiss National Science Foundation and MADALGO, a

Center of the Danish National Research Foundation.
†Brown University. E-mail: shay@cs.brown.edu
‡MIT. E-mail: csom@csail.mit.edu
1Asymptotic notation as in Õ(·) suppresses polylogarithmic

factors in the number of nodes n.

nodes. Indeed, shortest-path query processing is an in-
tegral part of many applications [Som10], in particular
in Geographic Information Systems (GIS), intelligent
transportation systems [JHR96]. These systems may
help individuals in finding fast routes or they may also
assist companies in improving fleet management, plant
and facility layout, and supply chain management. A
particular challenge for traffic information systems or
public transportation systems is to process a vast num-
ber of queries on-line while keeping the space require-
ments as small as possible [Zar08]. Low space consump-
tion is obviously very important when a query algorithm
is run on a system with heavily restricted memory such
as a handheld device [GW05] but it is also important
for systems with memory hierarchies [HMZ03, AT05],
where caching effects can have a significant impact on
the query time.

While many road networks are actually not exactly
planar [EG08, AFGW10], they still share many proper-
ties with planar graphs; in particular, many road net-
works appear to have small separators as well. For this
reason, planar graphs are often used to model various
transportation networks.

In the following, we provide shortest-path query
data structures (also known as distance oracles) for
planar graphs for essentially any specified space re-
quirement. Throughout the paper we assume the edge
lengths to be non-negative.2 Our results extend re-
sults of Cabello [Cab06], Chen and Xu [CX00], and
Fakcharoenphol and Rao [FR06] and extend one re-
sult and improve upon another result of Djidjev [Dji96].
Consider Figure 1 for an illustration and comparison.

Theorem 1.1. Let G be a directed planar graph on
n vertices. For any value S in the range S ∈
[n lg lg n, n2], there is a data structure with preprocess-
ing time O(S lg3 n/ lg lg n) and space O(S) that answers
distance queries in O(nS−1/2 lg2 n lg3/2 lg n) time per
query.

2Our results apply to graphs with negative-length edges by
using reduced lengths induced by a feasible price function [Joh77].

The current best bound for computing a feasible price-function in
a planar graph is O(n lg2 n/ lg lg n) [MWN10].

As a corollary, we obtain the following result on k–
many distances [FMS91], improving upon an algorithm
of Cabello [Cab06], which runs in time Õ((kn)2/3 +
n4/3). Our result is an improvement for k = õ(n). For
the range roughly k ∈ [

√
n, n), our algorithm is faster

by a factor of Õ((n/k)2/3).

Theorem 1.2. Let G be a directed planar graph on n
vertices. The distances between k = Ω(n1/2 lg n/ lg lg n)
pairs of nodes (s1, t1), (s2, t2), . . . (sk, tk) can be com-
puted in time O((kn)2/3(lg n)7/3(lg lgn)2/3).

We also give a data structure that keeps the space
requirements as small as possible, i.e. linear in the size
of the input. This is the first linear-space data structure
with provably sublinear query time for exact point-
to-point shortest-path queries. Nussbaum [Nus11] has
simultaneously obtained a similar result.

Theorem 1.3. For any directed planar graph G with
non-negative arc lengths and for any constant ε > 0,
there is a data structure that supports exact distance
queries in G with the following properties: the data
structure can be created in time O(n lg n), the space
required is O(n), and the query time is O(n1/2+ε).

More generally, our data structure works for the
range S ∈ [n, n lg lg n] (using a non-constant ε, see de-
tails in Section 3), where we slightly improve upon the
tradeoff obtained by the construction of Fakcharoenphol
and Rao [FR06]. Combined with Theorem 1.1, we pro-
vide efficient distance oracles for any space bound S ∈
[n, n2].

The main techniques we use are Frederickson’s
r–division [Fre87], Fakcharoenphol and Rao’s imple-
mentation of Dijkstra’s algorithm [FR06], and Klein’s
Multiple-Source Shortest Paths (MSSP) data struc-
ture [Kle05], for which we propose a more space-efficient
alternative (see Section 4 for a detailed comparison) as
follows.

Theorem 1.4. Given a directed planar graph G on n
nodes and a simple cycle C with c = O(

√
n) nodes, there

is an algorithm that preprocesses G in O(n lg3 n) time
to produce a data structure of size O(n lg lg c) that can
answer the following queries in O(c lg2 c lg lg c) time: for
a query node u, output the distance from u to all the
nodes of C.

Since Klein’s MSSP data structure has found nu-
merous applications, we believe that our data structure
could be a rather useful tool in other algorithms as well.3

3There is at least one application for approximate distance
oracles [Som11].

The shortest-path query problem has been investi-
gated heavily from an experimental perspective as well.
Experimental results suggest that query times propor-
tional to the shortest-path length are possible in prac-
tice using algorithms based on the so-called arc-flag
technique [Lau04, KMS05, HKMS09].4 Hilger, Köhler,
Möhring, and Schilling make a statement about the (ex-
perimental) worst-case behavior of their method:

In all cases, the search space of our arc-
flag method is never larger than ten times
the actual number of nodes on the shortest
paths [HKMS09, Section 6].

We can now actually prove a similar statement:

In (provably) all cases, the search space of our
method is never larger than a polylogarithmic
factor times the length ` of the shortest paths.

More precisely:

Theorem 1.5. For any planar graph G with edge
lengths ≥ 1 there is an exact distance ora-
cle using space O(n lg n lg lg n) with query time
O(min

{
` lg2 ` lg lg `,

√
n lg2 n

}
) for any pair of nodes

at distance `. The preprocessing time is bounded
by O(n1+ε) for any constant ε > 0.

Note that our data structure has query time propor-
tional to the path length. In fact, our algorithm main-
tains a Bellman-Ford-type invariant: after iteration i,
the distance represents the minimum path length among
all paths on Õ(i) edges — the correct distance is com-
puted after time roughly proportional to the minimum
number of edges on a shortest path but we can only
guarantee correctness after time Õ(`). If we may further
assume that, for some constant ε̄ > 0, all s − −t paths
of length at most (1 + ε̄)dG(s, t) have Ω(hG(s, t)) edges
(where hG(s, t) denotes the number of edges (hops) on
a minimum-hop shortest-path), then our data structure
can be constructed to have query time proportional
to the minimum number of edges on a shortest path
Õ(hG(s, t)). This assumption essentially means that
any s−−t path with significantly fewer edges than the
shortest path is much longer.

Our main contributions can be summarized as fol-
lows: (i) We improve the worst-case behavior of pre-
viously known distance oracles with low space require-
ments, providing a distance oracle with fast preprocess-
ing algorithm that works for the whole tradeoff curve

4The preprocessing algorithm of this technique first partitions
the graph into regions Vi and thereafter labels each edge e for all
regions Vi with a boolean flag spi(e) indicating whether e lies on

any shortest path to any node in Vi. At query time, only edges
leading towards the target region need to be considered.

(we also provide the first one with linear space and sub-
linear query time), and (ii) we make an important step
towards proving the behavior observed in practice. As
our main tool, (iii) we provide a more space-efficient
multiple-source shortest-path data structure.

1.1 Related Work. Shortest-path query processing
for planar graphs has been studied extensively. In this
section, we give a brief review of previous results. We
focus on the space–query time tradeoff. See Figure 1
for a summary of known results in comparison with
ours. The tradeoffs previously had not been illustrated
by a space vs. query time plot as in Figure 1; indeed,
the illustration suggests that a data structure like the
one described in our main theorem (Theorem 1.1) was
bound to exist.

4/3 23/2

1/4

1/3

1/2

1

lgS/ lg n

lgQ/ lg n

[FR06]

[Dji96]

[ACC+96]

[Dji96]

[CX00, Cab06]

Thm 1.1

Figure 1: Tradeoff of the Space [S] vs. the Query time
[Q] for different shortest-path query data structures
on a doubly logarithmic scale, ignoring constant and
logarithmic factors. The upper line represents the
Q = n2/S tradeoff (completely covered by oracles of
Djidjev [Dji96]; the oracles of Arikati, Chen, Chew,
Das, Smid, and Zaroliagis [ACC+96] cover the range
S ∈ [n3/2, n2]; SSSP (S = n) and APSP (S = n2)
also lie on this line). The lower line represents the
Q = n/

√
S tradeoff; the result of Djidjev [Dji96] covers

the range S ∈ [n4/3, n3/2]; Chen and Xu [CX00] and
Cabello [Cab06] extend this to S ∈ [n4/3, n2]. The data
structure of Fakcharoenphol and Rao [FR06] covers the
point S = n and Q =

√
n. We extend their results to

the full range.

For exact shortest-path queries, the currently best
result in terms of the tradeoff between space and query
time is by Fakcharoenphol and Rao [FR06]. Their

data structure of space Õ(n) can be constructed in
time Õ(n) and processes queries in time Õ(

√
n). The

preprocessing time can be improved by a logarithmic
factor [KMW10]. (Applications to distance oracles are
not explicitly stated in [KMW10].)

Some distance oracles have better query times.
Djidjev [Dji96], improving upon earlier work of Feuer-
stein and Marchetti-Spaccamela [FMS91], proves that,
for any S ∈ [n, n2], there is an exact distance oracle with
preprocessing time O(S) (which increases to O(n

√
S)

for S ∈ [n, n3/2]), space O(S), and query time O(n2/S).
For a smaller range, he also proves that, for any S ∈
[n4/3, n3/2], there is an exact distance oracle with pre-
processing time O(n

√
S), space O(S), and query time

Õ(n/
√
S). Chen and Xu [CX00], extending the range,

prove that, for any S ∈ [n4/3, n2], there is an exact dis-
tance oracle using space O(S) with preprocessing time
O(n
√
S) and query time Õ(n/

√
S). Cabello [Cab06],

mainly improving the preprocessing time, proves that,
for any S ∈ [n4/3, n2], there is an exact distance ora-
cle with preprocessing time and space O(S) and query
time Õ(n/

√
S). Compared to Djidjev’s construction,

the query time is slower by a logarithmic factor but the
range for S is larger and the preprocessing time is faster.
Nussbaum [Nus11] provides a data structure that main-
tains both the tradeoff from [Dji96, CX00] and the fast
preprocessing time from [Cab06]. Nussbaum also pro-
vides a different data structure with a “clean” tradeoff of
space O(S) and query time O(n/

√
S), however spend-

ing time Õ(S3/2/
√
n) in the preprocessing phase. In

our construction, we sacrifice another root-logarithmic
factor in the query time (compared to [Cab06]) but we
prove the bounds for essentially the whole range of S;
our preprocessing time remains Õ(S).

If constant query time is desired, storing a com-
plete distance matrix is essentially the best solution
we have. Wulff-Nilsen [WN10a] recently improved the
space requirements to o(n2). If the space is restricted
to linear, using the linear-time single-source shortest
path algorithm of Henzinger, Klein, Rao, and Subrama-
nian [HKRS97] is the fastest known for exact shortest-
path queries until the current work (Theorem 1.3).
Nussbaum [Nus11] has simultaneously obtained a result
similar to Theorem 1.3.

Efficient data structures for shortest-path queries
have also been devised for restricted classes of pla-
nar graphs [DPZ00, CX00] and for restricted types of
queries [Epp99, KK06, Sch98, Kle05]. If approximate
distances and shortest paths are sufficient, a better
tradeoff with Õ(n) space and Õ(1) query time has been
achieved [Tho04, Kle02, Kle05, KKS11].

Based on separators, geometric properties, and
other characteristics such as highway structures, many

efficient practical methods have been devised [GSSD08,
SS05, BFSS07], their time and space complexities
are however difficult to analyze. Competitive worst-
case bounds have been achieved under the assumption
that actual road networks have small highway dimen-
sion [AFGW10, ADF+11]. While our preprocessing al-
gorithm (Theorem 1.5) runs in almost linear time, some
of the problems that appear in the preprocessing stage
of practical route planning methods have recently been
proven to be NP-hard [BDDW09, BCK+10].

2 Preliminaries.

2.1 Recursive r–division of Planar Graphs. Let
G = (V,E) be a planar graph with |V | = n. Let EP be
a subset of E, and let P = (VP , EP) be the subgraph of
G induced by EP . P is called a piece of G. The nodes of
VP that are incident in G to nodes of V \ VP are called
the boundary nodes of P and denoted by ∂P .

An r–division [Fre87] of G is a decomposition into
O(n/r) edge-disjoint pieces, each with O(r) nodes and
O(
√
r) boundary nodes. We use an r–division with the

additional property that, in each piece, there exist a
constant number of faces, called holes, such that every
boundary node is incident to some hole. Such a decom-
position can be found in O(n lg r+nr−1/2 lg n) [WN10b]
by applying Miller’s cycle separator [Mil86] iteratively.

We use this r–division recursively. Let the base of
the recursion be level 0, and let the top of the recursion
be level k. The entire graph G is defined to be the only
piece at level k. The pieces of level i of the recursion
are obtained by computing an ri–division for each level–
(i+ 1) piece. The notation ri suggests that we may use
a different parameter r in the r–division at every level
of the recursion. Indeed, using a non-uniform recursion
is important in obtaining Theorem 1.3. For a level–i
piece P , the level–(i − 1) pieces obtained by applying
the r–division to P are called the subpieces of P .

We stress that the classification of nodes of a piece
at any level as boundary nodes is with respect to G (and
not P). This implies that, if v is a boundary node of
a level–i piece, then v is also a boundary node of any
lower-level piece that contains v. This generalizes the
decomposition used in [FR06], where Miller’s separator
is used at each level rather than an r–division.

2.2 Klein’s Multiple-Source Shortest Paths Al-
gorithm. Klein [Kle05] gave a multiple-source shortest
path (MSSP) algorithm with the following properties.
The input consists of a directed planar embedded graph
G with non-negative arc-lengths, and a face f . For each
node u in turn on the boundary of f , the algorithm com-
putes (an implicit representation of) the shortest-path
tree rooted at u. This takes a total of O(n lg n) time

and space. Subsequently, the distance between any pair
(u, v) of nodes of G where u is on the boundary of f
(and v is an arbitrary node), can be queried in O(lg n)
time. In particular, given a set S of O(

√
n) nodes on the

boundary of a single face, the algorithm can compute all
S-to-S distances in O(n lg n) time.

We propose a more space-efficient alternative in Sec-
tion 4, wherein we also provide a detailed comparison.

2.3 Dense Distance Graphs and Efficient Im-
plementation of Dijkstra’s Algorithm. The dense
distance graph for a piece P , denoted by DDGP , is
the complete graph on ∂P , the boundary nodes of P ,
such that the length of an arc corresponds to the dis-
tance (in P) between its endpoints. The dense dis-
tance graph for all pieces P in the r–division can be
computed in O(|V (G)| lg |V (G)|) time and space using
Klein’s MSSP; For each piece P , compute MSSP data
structures in O(|P | lg |P |) time and space a constant
number of times, specifying a different hole of P as the
distinguished face at each run. Then query the MSSP
data structures for the distances between the boundary
nodes in O(|∂P |2 lg |P |) time. Since in an r–division
|∂P | =

√
|P |, this takes O(|P | lg |P |) time and space per

piece, for a total of O(|V (G)| lg |V (G)|) for all pieces.
Let P be a set of pieces (not necessarily at the same

level), and let the graph H be the union of the dense
distance graphs of the pieces in P. Fakcharoenphol
and Rao [FR06] devised an ingenious implementation
of Dijkstra’s algorithm [Dij59] that computes a shortest-
path tree in H in time O(|V (H)| lg2 n), where |V (H)|
is the number of nodes in H (i.e., the total number of
boundary nodes in all the pieces in P). We will refer to
this implementation as FR-Dijkstra.

In fact, the proof of Fakcharoenphol and Rao’s
algorithm only relies on the property that the distances
in each of the dense distance graphs given as input
correspond to distances in a planar graph between a
set of nodes that lie on a constant number of faces. It
does not rely on any other properties of the r–division.

FR-Dijkstra can be extended to the following set-
ting (cf. [BSWN10]). Let J be a planar graph. Let n′

denote the number of nodes of J ∪H. We can compute
shortest paths in H ∪J in O(|H| lg2 |H|+n′ lg n′) time.
The edges of H are relaxed using FR-Dijkstra, while the
edges of J are relaxed as in a traditional implementation
of Dijkstra’s algorithm using a heap.

2.3.1 External Dense Distance Graphs. For a
piece P , let G − P be the graph obtained from G by
deleting the nodes in VP − ∂P . The external dense
distance graph of P , denoted by DDGG−P , is the
complete graph on ∂P such that the length of an arc

corresponds to the distance between its endpoints in
G − P . External dense distance graphs were used
recently in [BSWN10]. Computing the external dense
distance graphs for all pieces in an r–division cannot be
done efficiently using Klein’s MSSP. The reason is that
|V (G − P)| can be Θ(|V (G)|) for all pieces. Instead,
the computation can be done in a top-down approach
as follows (cf. [BSWN10]). Recall that an r–division
is obtained as the set of pieces of the lowest level in
a recursive division of the graph using Miller’s simple-
cycle separators. Consider the set Q of all pieces at all
levels of the recursion (rather than just the set of pieces
at the lowest level). Note that there are O(lg |V (G)|)
recursive levels since the size of the pieces decreases
by a constant factor for every constant number of
applications of Miller’s cycle separator theorem. First,
we computeDDGQ for every pieceQ ∈ Q. As explained
above, this can be done in O(|V (G)| lg |V (G)|) for all
the pieces in a specific level of the recursion, for a total
of O(|V (G)| lg2 |V (G)|) for all pieces in Q. Next, we
consider a piece Q and denote the two subpieces of Q
by Q1 and Q2. DDGG−Q2 is obtained by computing
distances in DDGQ1 ∪DDGG−Q (see Figure 2), using
multiple applications of FR-Dijkstra, once for each node
in ∂Q2. This takes O(|Q| lg2 |∂Q|) time per piece,
for an overall O(|V (G)| lg2 |V (G)|) time for all pieces
in a specific level. Since the number of levels is
bounded by O(lg |V (G)|), the entire computation takes
O(|V (G)| lg3 |V (G)|) time.

Q2
Q1

G-Q

Figure 2: Pieces Q1 and Q2 in some level of the recursive
application of Miller’s cycle separator theorem. The
piece Q is the union of Q1 and Q2. Distances in G−Q2,
the exterior of Q2, are obtained by considering shortest
paths in the interior of Q1 and in G − Q, the exterior
of Q.

3 A Linear-Space Distance Oracle.

We first provide our linear-space data structure. The
techniques employed here are reused in the subsequent
sections, particularly in the cycle MSSP data structure
(Section 4). In the following we prove a more precise
version of Theorem 1.3.

Theorem 1.3. For any directed planar graph G with
non-negative arc lengths and for any constant ε > 0,
there is a data structure that supports exact distance
queries in G with the following properties: the data
structure can be created in time O(n lg n), the space
required is O(n), and the query time is O(n1/2+ε).

For non-constant ε > 0, the preprocessing time is
O(n lg(n) lg(1/ε)), the space required is O(n lg(1/ε)),
and the query time is O(n1/2+ε + n1/2 lg2(n) lg(1/ε)).

Our distance oracle is an extension of the oracle in
Fakcharoenphol and Rao [FR06]. The main ingredients
of our improved space vs. query time tradeoff are (i)
using recursive r–divisions instead of cycle separators,
and (ii) using an adaptive recursion,5 where the ratio
between the boundary sizes of piece at consecutive levels
is
√
n.
We split the proof into descriptions and analysis

of the preprocessing and query algorithms. Let k =
Θ(lg(1/ε)).

Preprocessing. We compute the recursive r–
division of the graph with k recursive levels and values
of {ri}ki=0 to be specified below. This takes O(kn lg n)
time. We then compute the dense distance graph for
each piece. This is done for a piece P , with r nodes
and O(

√
r) boundary nodes on a constant number of

holes, by applying Klein’s MSSP algorithm [Kle05] as
described in Section 2.3. Thus, all of the boundary-to-
boundary distances in P are computed in O(r lg r) time.
Summing over all O(n/ri) pieces at level i, the prepro-
cessing time per level is O(n lg ri). The overall time to
compute the dense distance graphs for all pieces over all
recursive levels is therefore O(kn lg n).

The space required to store DDGP is O((
√
r)2) =

O(r); summing over all pieces at level i we obtain space
O(nri

ri) = O(n) per level; the total space requirement
is O(kn).

Query. Given a query for the distance between
nodes u and v, we proceed as follows. For simplicity
of the presentation, we initially assume that neither u
nor v are boundary nodes.

Let P0 be the level–0 piece that contains u. We
compute distances from u in P0. This is done in O(r0)
time using the algorithm of Henzinger et al. [HKRS97].
Denote these distances by distP0(u,w) for w ∈ P0. Let
H0 denote the star graph with center u and leaves w ∈
∂P0. The arcs of H0 are directed from u to the leaves,
and their lengths are the corresponding distances in P0.

Let Su be the set of pieces that contain u. Note
that Su contains exactly one piece of each level. Let Ru

5This appears to be the main difference to the distance oracle

of Nussbaum [Nus11], which uses a non-adaptive recursion. Using
our adaptive recursion is crucial whenever S ∈ [n lg lg n, n lg n).

be the union of subpieces of every piece in Su. That
is, Ru =

⋃
P∈Su

{P ′ : P ′ is a subpiece of P}. Let Hu

be the union of the dense distance graphs of the pieces
in Ru. We use FR-Dijkstra (see Section 2.3) to compute
distances from u in Hu∪H0. Observe that any shortest
path from u to a node of Hu can be decomposed into
a shortest path in P0 from u to ∂P0 and shortest paths
each of which is between boundary nodes of some piece
in Ru. Since all u-to-∂P0 shortest paths in P0 are
represented in H0, and since all shortest paths between
boundary nodes of pieces in Ru are represented in Hu,
this observation implies that distances from u to nodes
of Hu in Hu∪H0 are equal to distances from u to nodes
of Hu in G. We denote these distances by distG(u,w)
for nodes w ∈ Hu.

We repeat a similar procedure for v (reversing the
direction of arcs) to compute distG(w, v), the distances
in G from every node w ∈ Hv to v.

Let Puv be the lowest-level piece that contains both
u and v. Assume first that Puv is not a level–0 piece.
Let Pu (Pv) be the subpiece of Puv that contains u (v).
Since Puv is both in Su and in Sv, both Pu and Pv are in
Ru as well as in Rv. This implies that we have already
computed distG(u,w) and distG(w, v) for all w ∈ ∂Pu.
Since we have assumed that Puv is not a level–0 piece,
the shortest u-to-v path must contain some node of
∂Pu. Therefore, the u-to-v distance can be found by
computing

min
w∈∂Pu

distG(u,w) + distG(w, v).

If Puv is a level–0 piece, then Puv = P0 , and the
u-to-v distance can be found by computing

min
{

distP0(u, v), min
w∈∂Puv

{distG(u,w) + distG(w, v)}
}
.

The case when u or v are boundary nodes is
a degenerate case that can be solved by the above
algorithm. Let Qu be the highest-level piece of which u
is a boundary node. We have the preprocessed distances
in Qu from u to all other nodes of ∂Qu. Therefore, it
suffices to replace Su above with the set of pieces that
contain Qu as a subgraph in order to assure that Hu

is small enough and that the distances computed by
the fast implementation of Dijkstra’s algorithm are the
distances from u to nodes of Hu in G.

Query Time. Computing the distances distP0(·, ·)
takes O(r0) time. Let |V (Hu)| denote the number
of nodes of Hu. The FR-Dijkstra implementation
runs in O(|V (Hu)| lg2 n) time. It therefore remains
to bound |V (Hu)|. Let Pi be the level–i piece in Su.
Pi has O(ri

ri−1
) subpieces, each with O(√ri−1) boundary

nodes. Therefore, the contribution of Pi to |V (Hu)| is

O(ri√
ri−1

). The total running time is therefore

O

(
r0 + lg2 n

k∑
i=1

ri√
ri−1

)
.

Recall that rk = |V (G)| = n, and set r0 =
√
n. For

i = 1 . . . k − 1 we recursively define ri so as to satisfy
ri√
ri−1

=
√
n.

This implies

r1 = n
1
2+ 1

4 = n1− 1
4

r2 = n
1
2+ 3

8 = n1− 1
8

r3 = n
1
2+ 7

16 = n1− 1
16

. . .

rk−1 = n1− 1
2k .

The total running time is thus bounded by

O

(
√
n+ lg2 n

(
(k − 1)

√
n+

n√
n1− 1

2k

))
≤

O
((
k
√
n+ n

1
2+ 1

2k+1

)
lg2 n

)
.(3.1)

By setting k = Θ(lg(1/ε)) we obtain the claimed
running times.

4 A Cycle MSSP Data Structure for Planar
Graphs.

In this section we provide our main technical tool. We
prove Theorem 1.4, which we restate here.

Theorem 1.4. Given a directed planar graph G on n
nodes and a simple cycle C with c = O(

√
n) nodes, there

is an algorithm that preprocesses G in O(n lg3 n) time
to produce a data structure of size O(n lg lg c) that can
answer the following queries in O(c lg2 c lg lg c) time: for
a query node u, output the distance from u to all the
nodes of C.

Comparison with Klein’s MSSP data struc-
ture Our data structure can be seen as an alternative
to Klein’s MSSP data structure (see Section 2.2) with
two main advantages (which we exploit in Section 5):

• our data structure can handle queries to any not-
too-long cycle as opposed to a single face (the
crucial difference and difficulty is that shortest
paths may cross a cycle but not a face),

• the space requirements are only O(n lg lg c) (we in-
ternally rely on the data structure in Theorem 1.3,
so even O(n) is possible at the cost of increasing
the query time) as opposed to O(n lg n),

and three main disadvantages:

• our data structure cannot efficiently answer queries
from u to a single node on the cycle C; such a
query requires the same time as computing the
distances from u to all the nodes on C (in many
existing applications, this disadvantage is not really
problematic, since MSSP is used for all nodes on
the face anyway),

• our data structure requires amortized time
O(lg2 c lg lg c) per node on the cycle (as opposed
to O(lg n)), which is slower for long cycles, and

• the preprocessing time of our data structure is
O(n lg3 n) as opposed to O(n lg n).

Let G be an embedded planar graph.
Preprocessing. Let G0 be the exterior of C. That

is, the graph obtained from G by deleting all nodes
strictly enclosed by C. Consider C as the infinite face
of G0. Similarly, let G1 be the interior of G. Namely,
the graph obtained from G by deleting all nodes not
enclosed by C. Consider C as the infinite face of G1.
Note that we have reduced the problem from query
nodes on a cycle C to query nodes on a face. The query
algorithm is supposed to handle paths that cross C. The
preprocessing step consists of the following:

1. Computing DDGC and DDGG−C . This can be
done in O((n + c2) lg n) time using Klein’s MSSP
algorithm [Kle05]. Storing DDGC and DDGG−C
requires O(c2) = O(n) space.

2. Computing an r–division of Gi (i ∈ {0, 1}) with
r = c2. Each piece has O(c2) nodes and O(c)
boundary nodes incident to a constant number of
holes. Consider all the nodes of C as boundary
nodes of every piece in the division. Note that each
piece still hasO(c) boundary nodes. This step takes
O(n lg n) time.

3. Computing, for each piece P , a recursive r–division
of P as the one in the preprocessing step of the
oracle in Section 3 (Theorem 1.3) with ε = 1/ lg c.
That is, the number of levels in this recursive r–
division is k = Θ(lg lg c). The top-level (level–k)
piece in this recursive division is the entire piece
P . In the description in Section 3, the top-level
piece is the entire graph and therefore it has no
boundary nodes. Here, in contrast, we consider
the boundary nodes of P as boundary nodes of the
top-level piece in the decomposition (and thus, as
boundary nodes of any lower-lever piece in which
they appear). This does not asymptotically change
the total number of boundary nodes at any level

of the recursive decomposition since P has O(c)
boundary nodes, and every level of the recursive
decomposition consists of a total of Ω(c) boundary
nodes. The time to compute the recursive r–
division for all pieces is bounded by O(n lg2 n).

4. Computing, for each piece P , the dense distance
graph for each of the pieces in the recursive de-
composition of P . Let HP denote the union of
the dense distance graphs for all the pieces in
the recursive decomposition of P . As discussed
in Section 3, the space required to store HP

is O(|P | lg ε) = O(|P | lg lg c). Using the meth-
ods presented in Section 3, computing HP takes
O(|P | lg |P | lg lg c) = O(c2 lg c lg lg c). Thus, the
total space and time required over all pieces P is
O(n lg lg c) and O(n lg c lg lg c), respectively.

5. Computing, for each piece P , the dense distance
graph DDGGi−P . Recall that we consider the
nodes of C as boundary nodes of every piece in
the division. These dense distance graphs can
be computed as described in Section 2.3.1. As
shown there, the entire computation (for all pieces
combined) takes O(n lg3 n) time.

The time required for the preprocessing step is therefore
O(n lg3 n) and the space required is O(n lg lg c).

Query. When queried with a node u, the data
structure outputs the distances from u to all the nodes
of C. We describe the case where u is not enclosed by C.
In this case, we use the dense distance graphs computed
in the preprocessing step for G0. The symmetric case
is handled similarly, by using the dense distance graphs
computed for G1.

Let P be the piece in the r–division of G0 to which
u belongs. Recall that P consists of O(c2) nodes.
Consider the recursive r–division of P computed in
item 3 of the preprocessing stage. Let P0 be the level–0
piece of P that contains u. P0 consists ofO(

√
c2) = O(c)

nodes.6

We first compute [HKRS97], in O(c) time, the
distances from u to all nodes of P0, and store them
in a table distP0 . We then compute, using FR-Dijkstra,
the distances from u in the union of the following dense
distance graphs (see Figure 3):

1. H0, the star graph with center u and leaves ∂P0.
The arcs of H0 are directed from u to the leaves
and their lengths are the corresponding lengths in
distP0 .

6Here, as in Section 3, we assume that u is not a boundary

node in the recursive r–division of P . The case where u is such a
boundary node is degenerate, see Section 3.

C

G1
G0 - P

uP0

Figure 3: A schematic diagram showing the various subgraphs whose dense distance graphs are used in a query
to the cycle MSSP data structure. The cycle C is double-lined. The interior of C is the subgraph G1. The query
node u is indicated by a small solid circle. The piece P in the r–division of the exterior of C (G0) is shown as a
grey region with solid boundary. The boundaries of the pieces whose dense distance graphs are in Hu are shown
as dotted lines (one level) and dashed-dotted lines (another level). P0 is the smallest piece of P that contains u.
Any shortest path from u to C can be decomposed into a shortest path from u to ∂P0 followed by shortest paths
between nodes on the boundaries shown in the figure.

2. Hu, the subset of dense distance graphs in HP that
correspond to pieces in the recursive decomposition
of P that contain u and their subpieces. These
dense distance graphs are available in Hu.

3. DDGG0−P

4. DDGC

Note that the first two graphs are the analogs of H0 and
Hu from Section 3.

Distances from u in the union of the above graphs
are equal to the distances from u in G. This is true since
any u-to-C shortest path can be decomposed into (i) a
shortest path in P0 from u to ∂P0, (ii) shortest paths
each of which is a shortest path in Q between boundary
nodes of Q for some piece Q in the recursive r–division
of P that is represented in Hu, (iii) shortest paths in
G0−P between nodes of ∂P ∪C, and (iv) shortest paths
in the interior of C between nodes of C.

To bound the running time of FR-Dijkstra we need
to bound the number of nodes in all dense distance
graphs used in the FR-Dijkstra computation. H0 has
O(
√
c) nodes. The analysis in Section 3 shows that the

graphs in the set Hu consist of O(
√
|P | lg lg |P |) nodes

(substitute k = 1/ lg |P | in eq. (3.1)). DDGG0−P has
O(c +

√
|P |) = O(c) nodes, and DDGC has c nodes.

Combined, the running time of the invocation of FR-

Dijkstra is bounded by O(c lg2 c lg lg c). This dominates
the O(c) time required for the computation of distP0 , so
the overall query time is O(c lg2 c lg lg c), as claimed.

5 Distance Oracles with Space S ∈ [n lg lgn, n2].
In this section we prove Theorem 1.1. Using our
new cycle MSSP data structure, the proof is rather
straightforward.

Theorem 1.1. Let G be a directed planar graph on
n vertices. For any value S in the range S ∈
[n lg lg n, n2], there is a data structure with preprocess-
ing time O(S lg3 n/ lg lg n) and space O(S) that answers
distance queries in O(nS−1/2 lg2 n lg3/2 lg n) time per
query.

Proof. Let r := (n2 lg lg n)/S. Note that r ∈ [lg lg n, n]
for any S ∈ [n lg lg n, n2].

Preprocessing. We start by computing an r–
division. Each piece has O(r) nodes and O(

√
r) bound-

ary nodes incident to a constant number of holes. For
each piece P we compute the following:

1. A distance oracle as in Theorem 1.3 with ε =
1/ lg r. This takes O(r lg r lg lg r) time and
O(r lg lg r) space.

2. For each hole of P (bounded by a cycle in G)
we compute our new cycle MSSP data structure.7

Since the number of holes per piece is constant, this
requires requires O(n lg3 n) time and O(n lg lg n)
space per piece.

Summing over all pieces, the preprocessing time is
O(S lg3 n/ lg lg n) and the space needed is O(S).

Query. Given a pair of nodes (s, t), we compute
a shortest s–t path as follows. Assume first that s
and t are in different pieces. Let P denote the piece
that contains s and let ∂P denote its boundary. We
compute the distances in G from ∂P to t using the cy-
cle MSSP data structures. These distances can be ob-
tained in time O(|∂P | lg2 n lg lg n) = O(

√
r lg2 n lg lg n).

Analogously, we compute the distances in G from s
to ∂P . It remains to find the node p ∈ ∂P that
minimizes dG(s, p) + dG(p, t), which can be done in
O(|∂P |) = O(

√
r) time using a simple sequential search.

If s and t lie in the same piece, the shortest s–t
path might not visit ∂P . To account for this, we query
the distance oracle for P , which takes O(

√
r lg2 r lg lg r)

time. We return the minimum distance found. �

k–many distances As a consequence, we also
obtain an improved algorithm for k–many distances,
whenever k = Ω(

√
n/ lg lg n).

Proof. [of Theorem 1.2] For some value of r to be spec-
ified below, we preprocess G in time O((n2/r) lg3 n),
and then we answer each of the k queries in time
O(
√
r lg2 r lg lg r). The total time is O((n2/r) lg3 n +

k
√
r lg2 r lg lg r). This is minimized by setting r =

n4/3k−2/3(lg n/ lg lg n)2/3. Note that r = O(n) since
k = Ω(

√
n lg n/ lg lg n). The total running time is thus

O((kn)2/3(lg n)7/3(lg lg n)2/3). �

Comparison and Discussion. The query time
of our data structure is at most O(

√
r lg2 r lg lg r),

which, in terms of S, is O(nS−1/2 lg2 n lg3/2 lg n).
Let us contrast this with Cabello’s data struc-
ture [Cab06] that, for any S ∈ [n4/3 lg1/3 n, n2] has
preprocessing time and space O(S) and query time
O(nS−1/2 lg3/2 n). In our construction, we sacrifice
a factor of O(

√
lg n(lg lg n)3) in the query time but

we gain a much larger regime for S. For the range
S ∈ [ω(n lg n/ lg lg n), o(n4/3 lg1/3 n)], only data struc-
tures of size O(S) with query time O(n2/S) had been
known [Dji96] (see also Figure 1).

To conclude this section, let us observe what hap-
pens when we gradually decrease the space requirements
S from n2 down to n, and, en passant, let us pose some

7Note that for S = o(n lg n) we cannot even afford to store
Klein’s MSSP data structure [Kle05].

open questions. For quadratic space (or even slightly
below [WN10a]), we can obtain constant query time.
As soon as we require the space to be O(n2−ε) for some
ε > 0, the query time increases from constant or poly-
logarithmic to a polynomial. It is currently not known
whether Õ(1) is possible or not — the known lower
bounds [SVY09, PR10] on the space of distance oracles
work for non-planar graphs only. Further restricting the
space, as long as the space available is at least Ω(n lg n),
the data structure can internally store MSSP data struc-
tures. The query time for this regime of S can actually
be made slightly faster than what we claim in Theo-
rem 1.1 (by avoiding the O(lg lgn)–factor due to the re-
cursion needed in Theorem 1.3 and its manifestation in
the cycle MSSP data structure). The data structure of
Nussbaum [Nus11] obtains a “clean” tradeoff with query
time proportional to O(n/

√
S) for S ≥ n4/3 (without

logarithmic factors in the query time, currently at the
cost of a slower preprocessing algorithm). The obvious
open question is whether it is possible to obtain a data
structure with space O(S) and query time O(n/

√
S) for

the whole range of S ∈ [n, n2] and without substantial
sacrifices with respect to the preprocessing time. An-
other open question is whether it is possible to improve
upon this tradeoff. Note that, for quadratic space, an
improvement of an (almost) logarithmic factor is possi-
ble [WN10a].

As soon as we require the space to be o(n lg n),
we cannot afford to store the MSSP data structure
anymore and we are currently forced to rely on the cycle
MSSP data structure (Theorem 1.4). The query time
increases to the time bound claimed in Theorem 1.1.
When we further restrict the space to o(n lg lg n), say
S = Θ(n lg(1/ε)) for some ε > 0, the query time
increases to O(n1/2+ε). A different recursion (maybe
à la [HKRS97]) could potentially reduce this to Õ(

√
n).

Let us briefly consider the additional space of the
data structure, assuming that storing the graph is free.
It is known that, for approximate distances, a query
algorithm can run efficiently using a data structure that
occupies sublinear additional space [KKS11]. For exact
distances and sublinear space, nothing better than the
linear-time SSSP algorithm [HKRS97] is known.

6 Distance Oracles with Query Time
Quasi-Proportional to the Shortest-Path
Length

We use our new cycle MSSP data structure to prove
Theorem 1.5, which states that there is a distance
oracle with query time proportional to the shortest-path
length. We actually prove two versions, the stronger one
being a distance oracle with query time proportional
to the minimum number of edges (hops) on a shortest

path. For the stronger version, we need the following
assumption, which essentially means that approximate
shortest paths do not use significantly fewer edges.

Assumption 6.1. Let hG(s, t) denote the number of
edges on a minimum-hop shortest-path. For some
constant ε̄ > 0, all s–t paths of length at most (1 +
ε̄)dG(s, t) have Ω(hG(s, t)) edges.

We restate Theorem 1.5 and its stronger variant.

Theorem 1.5. For any planar graph G with edge
lengths ≥ 1 there is an exact distance ora-
cle using space O(n lg n lg lg n) with query time
O(min

{
` lg2 ` lg lg `,

√
n lg2 n

}
) for any pair of nodes

at distance `. The preprocessing time is bounded
by O(n1+ε) for any constant ε > 0.

Furthermore, if Assumption 6.1 holds for G, the
query time is at most O(min

{
h lg2 h lg lg h,

√
n lg2 n

}
)

for any pair of nodes (u, v) at hop-distance h =
hG(u, v).

Our main ingredient is a distance oracle for planar
graphs with tree-width8 w.

Theorem 6.1. Let G be a planar graph on n vertices
with tree-width w. For any constant ε > 0 and for
any value S in the range S ∈ [n lg lgw, n2], there is
a data structure with preprocessing time O(S lg2 n +
n1+ε) and space O(S) that answers distance queries in
O(min{nS−1/2 lg2.5 n,w lg2 w lg lgw}) time per query.

Note that for S superlinear in n but less than roughly
nw, the oracle cannot make any use of the additional
space available and the query algorithm runs in time
proportional to w (up to logarithmic factors). Any
application should use either space close to linear or
more than Ω(nw).

Using Theorem 6.1, the proof of Theorem 1.5
boils down to a combination of slicing (see for exam-
ple [Bak94, Kle08]), local tree-width [Epp00, DH04], and
scaling.

Proof. [of Theorem 1.5] We repeatedly use Theorem 6.1
for different subgraphs as follows.

Slicing and local tree-width. We use standard
techniques [Bak94, Kle08] and research on the related
linear local tree-width property [Epp00, DH04] to slice a
planar graph into subgraphs of a certain tree-width:

• We compute a breadth-first search tree in the
planar dual rooted at an arbitrary face.

8See [Hal76, RS86, AP89] for definitions and much more on
tree-width.

• The subgraph induced by the nodes at depth d ∈
[d1, d2] has tree-width O(d2 − d1) [Epp00, DH04].

If we were only interested in paths using at most w
edges, we could (i) cut the graph into slices of depth w,
and (ii) check the union of any two consecutive levels
containing both endpoints. It is straightforward to see
that each path on w edges lies completely within one of
these unions.

Scaling. We apply the slicing step described in the
previous paragraph for different scales.

• For every integer i > 0 with 2i ≤
√
n, we slice the

graph into subgraphs Gij at depth r = 2i; here, Gij
denotes the graph induced by the nodes adjacent
to all the faces at depth in [jr, (j + 1)r). Every
subgraph Gij has tree-width at most O(r).

• For any two consecutiveGij , G
i
j+1 we compute a dis-

tance oracle of size O(|V (Gij ∪Gij+1)| lg lg |V (Gij ∪
Gij+1)|) with query time O(r lg2 r lg lg r) as in The-
orem 6.1. Since each node is in at most two graphs
Gij and since each Gij participates in at most two
distance oracles, the total size of all these distance
oracles per level i is O(n lg lg n). The total size of
our data structure is thus O(n lg n lg lg n).

Which Scale? Let the smallest number of edges
(or hops) on any shortest path from u to v be h =
hG(u, v). At query time we use an approximate distance
oracle to determine the right scale. In the preprocess-
ing algorithm, we also precompute the approximate dis-
tance oracle of Thorup [Tho04] for ε = 1/2. This oracle
can be computed in O(nε−1 lg3 n) time, it uses space
O(nε−1 lg n), and it answers (1 + ε)–approximate dis-
tance queries in time O(1/ε). If Assumption 6.1 holds,
we instead use that value of ε̄ in the construction of
Thorup’s distance oracle. The asymptotic space con-
sumption is not increased.

Query Algorithm. At query time, given a pair of
nodes (u, v) at distance `, we need to find a level that
contains a shortest path. We query the approximate
distance oracle in time O(1/ε) to obtain an estimate
for `. Let ˜̀ denote this estimate. We then execute one
of the following search algorithms.

In the case that Assumption 6.1 does not hold, we
directly query level i for the smallest i with 2i ≥ ˜̀. Since
all the edge weights are at least 1, any path of length ˜̀
has at most ˜̀ edges and is thus contained in some graph
Gij at level i. Since graphs at level i have tree-width
O(2i), and since 2i = O(˜̀) = O(`), the running time of
the query algorithm is O(` lg2 ` lg lg `) as claimed.

If Assumption 6.1 does hold, we search the data
structure level by level with increasing i until the first

time a distance at most ˜̀ is found. By Assumption 6.1,
we know that any u-to-v path of length ≤ (1 + ε̄)` uses
at least c · hG(u, v) edges for some constant c ≤ 1. We
therefore search the next 1− lg2 c levels to ensure that
we find a shortest path. The running time is a geometric
sum, which is dominated by the time to search the last
level with tree-width O(hG(u, v)). �

6.1 Distance Oracles for Planar Graphs with
Tree-width o(

√
n). In this section we prove Theo-

rem 6.1. There exist efficient distance oracles for (not
necessarily planar) graphs with tree-width w. Chaud-
huri and Zaroliagis [CZ00] provide a distance oracle
that uses space O(w3n) and answers distance queries in
time O(w3α(n)), where α(n) denotes the inverse Ack-
ermann function. Farzan and Kamali [FK11] provide
a distance oracle that uses space O(wn) and answers
distance queries in time O(w2 lg3 w).

In our application, the tree-width w may be non-
constant up to O(

√
n). For this reason we cannot use

their distance oracles. In the following we improve upon
their results for the special case where graphs are further
assumed to be planar: we can obtain space O(n lg lgw)
and query time O(w lg2 w lg lgw) using our distance
oracle.

In some sense our proof can be seen as an improve-
ment over Djidjev’s data structure with space O(S)
and query time O(n2/S). His data structure works on
any graph with recursive balanced separators of size
O(
√
n) and, furthermore, similar results can be ob-

tained for graphs with separators of general size f(n) =
o(n) [Dji96, Sections 3 and 4]. The data structure
with the better trade-off (space O(S) and query time
O(n/

√
S)) however only works for planar graphs [Dji96,

Section 5], since it exploits the Jordan Curve Theo-
rem. We can now exploit the Jordan Curve Theorem
for planar graphs with smaller separators by observing
that, for planar graphs with smaller tree-width (o(

√
n)),

the size of the Jordan Curve separating the inside from
the outside decreases proportionally [ST94, DPBF10].
These separators are referred to as sphere-cut separa-
tors [ST94, DPBF10] and they can be found efficiently.

Lemma 6.1. (Gu and Tamaki [GT09, Theorem 2])
For any constant ε > 0 and for any biconnected vertex-
weighted planar graph on n nodes with tree-width w,
there is an O(n1+ε)–time algorithm that finds a non-
self-crossing cycle C of length O(w/ε) such that any
connected component of G \ C has weight at most 3/4
the total weight.

Proof. The algorithm computes a branch decomposition
as in Gu and Tamaki [GT09, proof of Theorem 2]. It
is known that branch-width and tree-width are within

constant factors [RS91].
A branch decomposition [RS91] of a graph G is a

ternary tree T whose leaves correspond to the edges
of G. Removing any tree edge e ∈ T creates two
connected components T1, T2 ⊆ T , each of which
corresponds to a subgraph Gi of G, induced by the
edges corresponding to the set of leaves of T in Ti. In
the branch decomposition tree, we may thus choose the
edge e∗ that achieves the best balance among all the
edges e ∈ T .

In the algorithm of Gu and Tamaki, each edge of the
branch decomposition tree corresponds to a self-non-
crossing closed curve passing through O(w/ε) nodes of
G (as in sphere-cut decompositions) that encloses G1

and does not enclose G2 (or vice versa).
Since the degree of each node is at most three, it is

possible to choose an edge e∗ such that the total weight
strictly enclosed by the non-self-crossing cycle Ce∗ and
the total weight strictly not enclosed by Ce∗ are each at
most a 3/4–fraction of the total weight. The cycle Ce∗
is our balanced separator of length O(w/ε). �

For an optimal sphere-cut decomposition, the
fastest algorithm runs in cubic time [ST94, GT08]. For
our purposes, the constant approximation in Lemma 6.1
suffices.

We define a variant of the r–division as in Sec-
tion 2.1, wherein we use either Miller’s cycle separator or
sphere-cut separators, whichever is smaller. An [r, w]–
division of G with tree-width w is a decomposition into
Θ(n/r) edge-disjoint pieces, each with O(r) nodes and
O(min{

√
r, w}) boundary nodes.

Lemma 6.2. For any constant ε > 0 and for any planar
graph on n nodes with tree-width w, an [r, w]–division
can be found in time O(n1+ε lg n+ n lg r+ nr−1/2 lg n).

Proof. Fix ε to be the desired constant > 0. The
procedure for obtaining the [r, w]–division is the one
described in [WN10b], but using either Miller’s cycle
separator or sphere-cut separators, whichever is smaller.
If
√
r = O(w) then since the separators we use are at

least as small as the separators assumed in the proof
of [WN10b, Lemmata 2 and 3], the lemmas apply and
the resulting decomposition has Θ(n/r) pieces, each
with O(r) nodes and O(

√
r) boundary nodes.

If
√
r = ω(w) then first apply the separator the-

orem as in the procedure for obtaining a weak r–
division [WN10b, Lemma 2] until every piece has size
O(r). Note that since

√
r = ω(w), we always use sphere-

cut separators, whose size is O(w) (hiding a linear factor
of 1/ε), regardless of the size of the piece we separate.
Therefore, by [WN10b, Lemma 2], the number of pieces
is Θ(n/r), and the total number of boundary nodes is

O(n/
√
r). However, here we need a tighter bound on

the total number of boundary nodes. In the following
we show that the total number of boundary nodes is
O(nw/r).

Consider the binary tree whose root corresponds
to G, and whose leaves correspond to the pieces of
the weak r–division. Each internal node in the tree
corresponds to a piece in the recursive decomposition
that either consists of too many nodes or contains
too many holes and is therefore separated into two
subpieces using a sphere-cut separator. As in the proof
of [WN10b, Lemma 2], for any boundary vertex v in
the weak r–division, let b(v) denote one less than the
number of pieces containing v as a boundary vertex.
Let B(n) be the sum of b(v) over all such v. Every time
a separator is used, at most cw boundary nodes are
introduced for some c > 0, and the piece to which these
nodes belong to is split into two pieces, so the number of
pieces to which these nodes belong to increases by one.
Therefore, B(n) is bounded by the number of internal
nodes times cw. Since the tree is binary, the number of
internal nodes is bounded by the number of leaves, so
B(n) = O(nw/r), which shows that the total number
of boundary nodes in this weak r–division is O(nw/r).

Next, consider the procedure in [WN10b, Lemma 3],
which further divides the pieces of the weak r–division
to make sure that the number of boundary nodes in each
piece is small enough. In our case we want to limit the
number of boundary nodes per piece to at most c′w for
some c′ (which we set > c below). Let ti denote the
number of pieces in the weak r–division with exactly i
boundary nodes. Note that

∑
i iti =

∑
v∈VB

(b(v) + 1),
where VB is the set of boundary vertices over all pieces
in the weak r–division. Hence,

∑
i iti ≤ 2B(n), so by

the bound on B(n),
∑
i iti = O(nw/r).

In the weak r–division, consider a piece P with i >
c′w boundary vertices. When the above procedure splits
P , each of the subpieces contains at most a constant
fraction of the boundary vertices of P . Hence, after
di/(c′w) splits of P for some constant d, all subpieces
contain at most c′w boundary vertices. This results
in at most 1 + di/(c′w) subpieces and at most cw new
boundary vertices per split. We may choose c′ to be
sufficiently larger than c. The total number of new
boundary vertices introduced by the above procedure
is thus ∑

i

cw(di/(c′w))ti ≤ d
∑
i

iti = O(nw/r)

and the number of new pieces is at most∑
i

(di/(c′w))ti = O(n/r).

Hence, the procedure generates an [r, w]–division. Since
a sphere-cut separator can be found in O(n1+ε) time,
a weak r–division can be found in O(n1+ε lg n) =
O(n1+ε′) time, and refining it into an [r, w]–division can
be done within this time bound. �

Proof. [of Theorem 6.1.] The data structure for planar
graphs with smaller tree-width is essentially the same
as the data structure for general planar graphs as
described in Section 5. The main difference is that,
when computing a cycle separator, instead of Miller’s
algorithm to find a cycle separator of length O(

√
n), we

use sphere-cut separators and the corresponding [r, w]–
division as in Lemma 6.2. �

7 Conclusion.

We introduce a new data structure to answer distance
queries between any node v and all the nodes on a
not-too-long cycle of a planar graph. Using this tool,
we significantly improve the worst-case query times for
distance oracles with low space requirements S (down
from O(n2/S) to Õ(

√
n2/S)). Furthermore, for linear

space, we improve the query time down from O(n)
to O(n1/2+ε) using adaptive recursion. We also give
the first distance oracle that actually exploits the tree-
width of a planar graph, particularly if it is o(

√
n)

and, as an application, we give a distance oracle whose
query time is roughly proportional to the shortest-path
length. Similar behavior of practical methods had been
observed experimentally before but could not be proven
until the current work.

An interesting and important open question is
whether there is another tradeoff curve below the space
O(S) and query time O(n/

√
S) curve.

Acknowledgments.

We thank Hisao Tamaki for helpful discussions
on [GT09].

References

[ACC+96] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul
Chew, Gautam Das, Michiel H. M. Smid, and Chris-
tos D. Zaroliagis. Planar spanners and approximate
shortest path queries among obstacles in the plane. In
4th European Symposium on Algorithms (ESA), pages
514–528, 1996.

[ADF+11] Ittai Abraham, Daniel Delling, Amos Fiat, An-
drew V. Goldberg, and Renato Fonseca F. Werneck.
VC-dimension and shortest path algorithms. In 38th
International Colloquium on Automata, Languages,
and Programming (ICALP), pages 690–699, 2011.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Gold-
berg, and Renato Fonseca F. Werneck. Highway di-
mension, shortest paths, and provably efficient algo-
rithms. In 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2010.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Lin-
ear time algorithms for NP–hard problems restricted
to partial k–trees. Discrete Applied Mathematics,
23(1):11–24, 1989.

[AT05] Lars Arge and Laura Toma. External data struc-
tures for shortest path queries on planar digraphs.
In 16th International Symposium on Algorithms and
Computation (ISAAC), pages 328–338, 2005.

[Bak94] Brenda S. Baker. Approximation algorithms for
NP–complete problems on planar graphs. Journal of
the ACM, 41(1):153–180, 1994. Announced at FOCS
1983.

[BCK+10] Reinhard Bauer, Tobias Columbus, Bastian
Katz, Marcus Krug, and Dorothea Wagner. Pre-
processing speed-up techniques is hard. In 7th In-
ternational Conference on Algorithms and Complexity
(CIAC), pages 359–370, 2010.

[BDDW09] Reinhard Bauer, Gianlorenzo D’Angelo, Daniel
Delling, and Dorothea Wagner. The shortcut problem -
complexity and approximation. In 35th Conference on
Current Trends in Theory and Practice of Computer
Science (SOFSEM), pages 105–116, 2009.

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and
Dominik Schultes. Fast routing in road networks with
transit nodes. Science, 316(5824):566, 2007.

[BSWN10] Glencora Borradaile, Piotr Sankowski, and
Christian Wulff-Nilsen. Min st-cut oracle for planar
graphs with near-linear preprocessing time. In 51st
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 601–610, 2010.

[Cab06] Sergio Cabello. Many distances in planar graphs.
In 17th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1213–1220, 2006. A preprint
of the journal version is available in the University of
Ljubljana preprint series, Vol. 47 (2009), 1089.

[CX00] Danny Ziyi Chen and Jinhui Xu. Shortest path
queries in planar graphs. In 32nd ACM Symposium on
Theory of Computing (STOC), pages 469–478, 2000.

[CZ00] Shiva Chaudhuri and Christos D. Zaroliagis. Short-
est paths in digraphs of small treewidth. part I: Sequen-
tial algorithms. Algorithmica, 27(3):212–226, 2000.
Announced at ICALP 1995.

[DH04] Erik D. Demaine and Mohammad Taghi Hajiaghayi.
Diameter and treewidth in minor-closed graph families,
revisited. Algorithmica, 40(3):211–215, 2004.

[Dij59] Edsger Wybe Dijkstra. A note on two problems
in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[Dji96] Hristo Djidjev. Efficient algorithms for shortest path
problems on planar digraphs. In 22nd International
Workshop on Graph-Theoretic Concepts in Computer
Science (WG), pages 151–165, 1996.

[DPBF10] Frederic Dorn, Eelko Penninkx, Hans L. Bod-

laender, and Fedor V. Fomin. Efficient exact algo-
rithms on planar graphs: Exploiting sphere cut de-
compositions. Algorithmica, 58(3):790–810, 2010. An-
nounced at ESA 2005.

[DPZ00] Hristo Djidjev, Grammati E. Pantziou, and Chris-
tos D. Zaroliagis. Improved algorithms for dynamic
shortest paths. Algorithmica, 28(4):367–389, 2000.

[EG08] David Eppstein and Michael T. Goodrich. Study-
ing (non-planar) road networks through an algorithmic
lens. In 16th ACM SIGSPATIAL International Sympo-
sium on Advances in Geographic Information Systems
(ACM-GIS), page 16, 2008.

[Epp99] David Eppstein. Subgraph isomorphism in planar
graphs and related problems. Journal of Graph Al-
gorithms and Applications, 3(3), 1999. Announced at
SODA 1995.

[Epp00] David Eppstein. Diameter and treewidth in minor-
closed graph families. Algorithmica, 27(3-4):275–291,
2000.

[FK11] Arash Farzan and Shahin Kamali. Compact nav-
igation and distance oracles for graphs with small
treewidth. In 38th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pages
268–280, 2011.

[FMS91] Esteban Feuerstein and Alberto Marchetti-
Spaccamela. Dynamic algorithms for shortest paths
in planar graphs. In 17th International Workshop
on Graph-Theoretic Concepts in Computer Science
(WG), pages 187–197, 1991.

[FR06] Jittat Fakcharoenphol and Satish Rao. Planar
graphs, negative weight edges, shortest paths, and near
linear time. Journal of Computer and System Sciences,
72(5):868–889, 2006. Announced at FOCS 2001.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications. SIAM
Journal on Computing, 16(6):1004–1022, 1987.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik
Schultes, and Daniel Delling. Contraction hierarchies:
Faster and simpler hierarchical routing in road net-
works. In 7th International Workshop on Experimental
Algorithms (WEA), pages 319–333, 2008.

[GT08] Qian-Ping Gu and Hisao Tamaki. Optimal branch-
decomposition of planar graphs in O(n3) time. ACM
Transactions on Algorithms, 4(3), 2008. Announced at
ICALP 2005.

[GT09] Qian-Ping Gu and Hisao Tamaki. Constant-factor
approximations of branch-decomposition and largest
grid minor of planar graphs in O(n1+ε) time. In 20th
International Symposium on Algorithms and Compu-
tation (ISAAC), pages 984–993, 2009.

[GW05] Andrew V. Goldberg and Renato Fonseca F. Wer-
neck. Computing point-to-point shortest paths from
external memory. In 7th Workshop on Algorithm En-
gineering and Experiments (ALENEX), pages 26–40,
2005.

[Hal76] Rudolf Halin. S-functions for graphs. Journal of
Geometry, 8(1-2):171–186, 1976.

[HKMS09] Moritz Hilger, Ekkehard Köhler, Rolf H.

Möhring, and Heiko Schilling. Fast point-to-point
shortest path computations with arc-flags. DIMACS
Series in Discrete Mathematics and Theoretical Com-
puter Science, 74:41–72, 2009. Papers of the 9th
DIMACS Implementation Challenge: Shortest Paths,
2006.

[HKRS97] Monika Rauch Henzinger, Philip Nathan Klein,
Satish Rao, and Sairam Subramanian. Faster shortest-
path algorithms for planar graphs. Journal of Com-
puter and System Sciences, 55(1):3–23, 1997. An-
nounced at STOC 1994.

[HMZ03] David A. Hutchinson, Anil Maheshwari, and Nor-
bert Zeh. An external memory data structure for
shortest path queries. Discrete Applied Mathematics,
126(1):55–82, 2003. Announced at COCOON 1999.

[JHR96] Ning Jing, Yun-Wu Huang, and Elke A. Runden-
steiner. Hierarchical optimization of optimal path find-
ing for transportation applications. In 5th Interna-
tional Conference on Information and Knowledge Man-
agement (CIKM), pages 261–268, 1996.

[Joh77] Donald B. Johnson. Efficient algorithms for shortest
paths in sparse networks. Journal of the ACM, 24(1):1–
13, 1977.

[KK06] Lukasz Kowalik and Maciej Kurowski. Oracles
for bounded-length shortest paths in planar graphs.
ACM Transactions on Algorithms, 2(3):335–363, 2006.
Announced at STOC 2003.

[KKS11] Ken-ichi Kawarabayashi, Philip Nathan Klein, and
Christian Sommer. Linear-space approximate dis-
tance oracles for planar, bounded-genus, and minor-
free graphs. In 38th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pages
135–146, 2011.

[Kle02] Philip Nathan Klein. Preprocessing an undirected
planar network to enable fast approximate distance
queries. In 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 820–827, 2002.

[Kle05] Philip Nathan Klein. Multiple-source shortest paths
in planar graphs. In 16th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 146–155, 2005.

[Kle08] Philip Nathan Klein. A linear-time approximation
scheme for TSP in undirected planar graphs with edge-
weights. SIAM Journal on Computing, 37(6):1926–
1952, 2008. Announced at FOCS 2005.

[KMS05] Ekkehard Köhler, Rolf H. Möhring, and Heiko
Schilling. Acceleration of shortest path and con-
strained shortest path computation. In 4th Interna-
tional Workshop on Experimental and Efficient Algo-
rithms (WEA), pages 126–138, 2005.

[KMW10] Philip Nathan Klein, Shay Mozes, and Oren
Weimann. Shortest paths in directed planar graphs
with negative lengths: A linear-space O(n log2 n)-time
algorithm. ACM Transactions on Algorithms, 6(2),
2010. Announced at SODA 2009.

[Lau04] Ulrich Lauther. An extremely fast, exact algorithm
for finding shortest paths in static networks with ge-
ographical background. In Geoinformation und Mo-
bilität — von der Forschung zur praktischen Anwen-

dung, volume 22, pages 219–230, 2004.
[Mil86] Gary L. Miller. Finding small simple cycle separa-

tors for 2–connected planar graphs. Journal of Com-
puter and System Sciences, 32(3):265–279, 1986. An-
nounced at STOC 1984.

[MWN10] Shay Mozes and Christian Wulff-Nilsen. Short-
est paths in planar graphs with real lengths in
O(n log2 n/ log log n) time. In 18th European Sympo-
sium on Algorithms (ESA), pages 206–217, 2010.

[Nus11] Yahav Nussbaum. Improved distance queries in
planar graphs. In 12th International Symposium on
Algorithms and Data Structures (WADS), pages 642–
653, 2011.

[PR10] Mihai Patrascu and Liam Roditty. Distance oracles
beyond the Thorup–Zwick bound. In 51st IEEE Sym-
posium on Foundations of Computer Science (FOCS),
2010.

[RS86] Neil Robertson and Paul D. Seymour. Graph mi-
nors. II. algorithmic aspects of tree-width. Journal of
Algorithms, 7:309–322, 1986.

[RS91] Neil Robertson and Paul D. Seymour. Graph mi-
nors. X. obstructions to tree-decomposition. J. Comb.
Theory, Ser. B, 52(2):153–190, 1991.

[Sch98] Jeanette P. Schmidt. All highest scoring paths in
weighted grid graphs and their application to finding
all approximate repeats in strings. SIAM Journal on
Computing, 27(4):972–992, 1998. Announced at ISTCS
1995.

[Som10] Christian Sommer. Approximate Shortest Path
and Distance Queries in Networks. PhD thesis, The
University of Tokyo, 2010.

[Som11] Christian Sommer. More compact oracles for
approximate distances in planar graphs. CoRR,
abs/1109.2641, 2011.

[SS05] Peter Sanders and Dominik Schultes. Highway hier-
archies hasten exact shortest path queries. In 13th An-
nual European Symposium on Algorithms (ESA), pages
568–579, 2005.

[ST94] Paul D. Seymour and Robin Thomas. Call routing
and the ratcatcher. Combinatorica, 14(2):217–241,
1994.

[SVY09] Christian Sommer, Elad Verbin, and Wei Yu. Dis-
tance oracles for sparse graphs. In 50th IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 703–712, 2009.

[Tho04] Mikkel Thorup. Compact oracles for reachability
and approximate distances in planar digraphs. Journal
of the ACM, 51(6):993–1024, 2004. Announced at
FOCS 2001.

[WN10a] Christian Wulff-Nilsen. Algorithms for Planar
Graphs and Graphs in Metric Spaces. PhD thesis,
University of Copenhagen, 2010.

[WN10b] Christian Wulff-Nilsen. Min st-cut of a planar
graph in O(n log logn) time. CoRR, abs/1007.3609,
2010.

[Zar08] Christos Zaroliagis. Engineering algorithms for
large network applications. In Encyclopedia of Algo-
rithms. 2008.

