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Abstract— Thorup and Zwick, in their seminal work, intro-
duced the approximate distance oracle, which is a data structure
that answers distance queries in a graph. For any integer k, they
showed an efficient algorithm to construct an approximate distance
oracle using space O(kn1+1/k) that can answer queries in time
O(k) with a distance estimate that is at most α = 2k − 1 times
larger than the actual shortest distance (α is called the stretch).

They proved that, under a combinatorial conjecture, their data
structure is optimal in terms of space: if a stretch of at most 2k−1 is
desired, then the space complexity is at least n1+1/k. Their proof
holds even if infinite query time is allowed: it is essentially an
“incompressibility” result. Also, the proof only holds for dense
graphs, and the best bound it can prove only implies that the size
of the data structure is lower bounded by the number of edges of
the graph. Naturally, the following question arises: what happens
for sparse graphs?

In this paper we give a new lower bound for approximate
distance oracles in the cell-probe model. This lower bound holds
even for sparse (polylog(n)-degree) graphs, and it is not an
“incompressibility” bound: we prove a three-way tradeoff between
space, stretch and query time. We show that, when the query time
is t, and the stretch is α, then the space S must be

S ≥ n1+Ω(1/tα)/ lg n . (1)

This lower bound follows by a reduction from lopsided set disjoint-
ness to distance oracles, based on and motivated by recent work
of Pǎtraşcu.

Our results in fact show that for any high-girth regular graph, an
approximate distance oracle that supports efficient queries for all
subgraphs of G must obey Eq. (1). We also prove some lemmas
that count sets of paths in high-girth regular graphs and high-girth
regular expanders, which might be of independent interest.

Keywords-distance oracle; data structures; lower bounds; cell-
probe model; lopsided set disjointness

1. INTRODUCTION

An approximate distance oracle is a data structure that
answers distance queries d(u, v) for a (connected) graph
G = (V,E). If the reported distance d̃(u, v) satisfies
d(u, v) ≤ d̃(u, v) ≤ α ·d(u, v) for all u, v ∈ V , the distance
oracle is said to have multiplicative stretch α. In all our
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lower bounds, the graphs are unweighted.1

Thorup and Zwick [29] coined the term distance ora-
cle and gave a method to preprocess an undirected graph
G = (V,E) in time Õ(kmn1/k) to create, for any integer k,
a data structure of size O(kn1+1/k) that can answer distance
queries with stretch 2k − 1 in time O(k). They also prove
that their oracles are essentially optimal in terms of the
stretch-space tradeoff, assuming a girth conjecture by Erdős
and others (Section 1.1). The preprocessing and query time
were improved upon later. Baswana and Sen [7] showed
how to get a preprocessing time of O(n2) for unweighted
graphs. Mendel and Naor [20] gave a data structure with
query time O(1), sacrificing a constant factor in the stretch.
If the input is restricted to special classes of graphs, the
girth-based lower bound may not apply. Indeed, there are
better constructions for some restricted graph classes. For
digraphs with bounded tree-width, Chaudhuri and Zaro-
liagis [9] gave an algorithm with linear preprocessing time
and almost constant query time. Thorup [28] and Klein [17],
[18] independently proposed efficient (1 + ε)–approximate
distance oracles for planar graphs. For a brief overview of
results on distance oracles, including the new lower bounds
introduced in this paper, see Table I.

1.1. Thorup and Zwick’s Girth-based Lower Bound

For sufficiently dense graphs, an information-theoretic
space lower bound was proven using the following girth
conjecture by Erdős and others [13], [14]:

Conjecture. There exists a graph G = (V,E) with |V | = n
nodes and |E| = Ω(n1+1/k) edges and girth g(G) > 2k.

The girth conjecture was proven for certain values of k
(1, 2, 3, and 5); for an overview see Hoory [16], and for

1As usual, n = |V | denotes the number of nodes, m = |E| denotes
the number of edges of the graph G, and Õ is the big-Oh notation hiding
poly-logarithmic factors. As usual, we abbreviate [n] = {1, 2, . . . , n}. All
logarithms are base-2 unless explicitly stated otherwise. ln denotes lge.
The distance dG(u, v) between u and v in G is the length, in edges, of
the shortest path between u and v. Three other definitions we use in the
introduction are: the girth of G, denoted by g(G), is the length of the
shortest cycle in G. G is called r-regular if each vertex has exactly r
neighbors. Two (or more) paths are called vertex-disjoint if they do not
have any vertices in common.



Graphs Preprocessing Space Query Stretch

general [13], [14], [29] Ω(n1+1/k) < 2k + 1

general (Lemma 10) n1+Ω(1/t) t ≤ additive 1

general (Theorem 1) n1+Ω(1/αt)/ lg n t ≤ α

n1+Ω(1/α)/ lg n O(1) ≤ α

n1+Ω(1/t)/ lg n t O(1)

general [29], [30] Õ(kmn1/k) O(kn1+1/k) O(k) 2k − 1

general [20], [21] O(mn1/k lg2 n) O(n1+1/k) O(1) O(k)

unweighted [7] O(n2) O(kn1+1/k) O(k) 2k − 1

unweighted [6] O(m + n23/12) O(n3/2) O(1) 3 plus additive 8
geometric (sparse spanner required) [15] O(n lg n) O(n lg n) O(1) 1 + ε
planar, directed [28] O(n lg3 n lg(nW )) O(n lg n lg(nW )) O(lg lg(nW )) 1 + ε
planar, undirected [17], [28] O(n lg3 n) O(n lg n) O(1) 1 + ε
bounded tree-width, directed [9] O(n) O(n) O(α(n)) 1

Table I
DISTANCE ORACLES FOR UNDIRECTED GRAPHS (EXCEPT [9], [28]). O-NOTATIONS HIDE ε’S. THE TOP PART OF THE TABLE LISTS LOWER BOUNDS,
THE BOTTOM PART LISTS UPPER BOUNDS. W DENOTES THE LARGEST INTEGER EDGE WEIGHT. THE STRETCH IS MULTIPLICATIVE UNLESS STATED

OTHERWISE. THE RESULTS IN BOLD ARE INTRODUCED IN THIS PAPER. THE QUERY TIME α(n) IN [9] DENOTES THE INVERSE ACKERMANN
FUNCTION.

the detailed connection to spanners and distance oracles see
Thorup and Zwick [29] and Althöfer et al. [4].

Thorup and Zwick’s lower bound proof roughly works
as follows: All 2Ω(n1+1/k) subgraphs G′ of the graph G
in the conjecture also have large girth g(G′) ≥ g(G).
For a distance oracle with stretch smaller than 2k + 1, at
least Ω(n1+1/k) bits of space are necessary, since it must
distinguish between any two different subgraphs G′ and
G′′, and it cannot omit any edges as there is no alternative
short path [29, Prop. 5.1]. Lower bounds for multiplicative
graph spanners [11] follow similar arguments. Woodruff [31]
recently gave a lower bound for additive graph spanners
without using Erdős’ girth conjecture.

The girth conjecture itself is tight in the sense that no
larger girth is possible [3], and its implications for distance
oracles have also been proven to be almost tight [29] in the
sense that the upper bound almost matches the lower bound.

Even though the lower bound by Thorup and Zwick is
tight, it is weaker than it seems: the hard instances for
their distance oracle are rather dense graphs, which contain
roughly n1+1/k edges. For stretch 3, these graphs have n3/2

edges. Indeed, they essentially state that we cannot compress
a (specially-constructed) graph to less than its original size,
or, alternatively, that the size of the data structure must be
at least Ω(m) (bits). The lower bound does not refer to the
query time at all, it even holds if the query algorithm is
allowed to access the complete data structure. For sparse
graphs, such a lower bound does not prove much, since
storing the entire graph only costs quasi-linear space.

1.2. Our Contributions

In the context of computing distances, many graphs that
are interesting in practice, for example road maps augmented
with flight connections, are sparse. Our main result in this
paper is a three-way tradeoff stating that, in the cell-probe

model [32] (see definition in Section 2), when the query
time and the stretch are small, then the space is large. The
main result of this paper is the following, which is restated
and proved as Theorem 18:

Theorem 1 (Main Theorem). A distance oracle with stretch
α using query time t requires space S = n1+Ω(1/tα)/ lg n
in the cell-probe model with w-bit cells, even on graphs
with maximum degree poly(twα/ lg n), where we require
α = o

(
lg n

lg(w lg n)

)
.

Throughout the paper, poly(x) means a polynomial in x
of unspecified constant degree. poly(x) is always allowed
to be at least any constant.

Corollary 2. A distance oracle with stretch α and query time
t = O(1) requires space S = n1+Ω(1/α)/ lg n in the cell-
probe model with w-bit cells, even on graphs with maximum
degree poly(wα/ lg n), where we require α = o

(
lg n

lg(w lg n)

)
.

Our lower bound in Corollary 2 is tight up to the constant
hidden in the Ω with respect to the distance oracle by Mendel
and Naor [20].

Corollary 3. A distance oracle with stretch α = O(1) and
query time t requires space S = n1+Ω(1/t)/ lg n in the cell-
probe model with w-bit cells, even on graphs with maximum
degree poly(tw/ lg n), where we require w = no(1).

We can also lower-bound the query time in terms of the
space and stretch:

Corollary 4. A distance oracle with stretch less than α

using space S requires query time t = Ω
(

lg n
α lg(S lg n/n)

)
in

the cell-probe model with w-bit cells, even when restricted
to graphs with maximum degree poly(twα/ lg n), where we
require α = o

(
lg n

lg(w lg n)

)
.



Unlike the lower bound by Thorup and Zwick [29],
which is information theoretic, our bound uses new tech-
niques based on Pǎtraşcu’s [26] recent communication lower
bounds for Lopsided Set Disjointness (LSD) and the lower
bounds for data structures that follow from it.

Pǎtraşcu proves lower bounds for reachability data struc-
tures on the butterfly graph, which is a very structured
graph, by reducing from LSD. His proof heavily uses the
structure of the butterfly graph, and is not generalizable for
our application. In this paper, we apply similar ideas, but
in a very unstructured way: our arguments work on any
graph, and use little knowledge about the graph; namely,
we only care about the degrees of the vertices in the graph
(poly(w lg n) suffices), and its girth. This allows us to prove
hardness of distance approximation on a large class of (high-
girth) graphs and their subgraphs.

1.3. Sketch of the Proof Technique

We now give a rough sketch of the proof of the main
theorem, highlighting some interesting technical details. The
proof is a reduction from the communication problem LSD,
in which Alice gets a set SA ⊆ [N ·B] of cardinality N , Bob
gets a set SB ⊆ [N · B], and they need to decide whether
SA ∩ SB = ∅. Strong lower bounds are known for LSD
(see Section 2). We prove that a distance oracle with good
parameters implies a good protocol for LSD, and derive our
lower bound from the contrapositive of this claim.

A standard way to perform such reductions is to trans-
late one query to the data structure into a communication
protocol where Alice sends Bob t lgS bits and Bob replies
with tw bits. However, lower bounds in communication
complexity are usually loose up to constant multiplicative
factors. The reduction puts this loose multiplicative factor in
the exponent of S. Therefore, this framework can only prove
lower bounds on space of the form S ≥ xΩ(1), where x is
some expression that depends on the problem parameters.
This is obviously useless for our purposes, since there is a
trivial distance oracle that takes space n2 (just pre-compute
all answers) and we wish to prove a lower bound larger
than n.

Pǎtraşcu, in several recent papers [25], [26] found a way
to prove lower bounds on S that hold up to a polylogarithmic
multiplicative factor. He considers performing k queries in
parallel, where k = n/polylog(n). In [26] he shows that
good space and good query time for k range counting queries
implies a good communication protocol for LSD, and he
deduces a lower bound for range counting. We use the same
idea here.

Our goal is thus to show that a good distance oracle
somehow implies a good protocol for LSD. Fix some graph
G = (V,E) whose girth g is large. Let the universe size
of the LSD problem be N · B = |E|. Choose an arbitrary
bijection f : E → [NB] between the edge-set E and the
elements of the universe [NB].

In the reduction, Bob transforms his set SB into a sub-
graph of G, G′ = (V,E′) = (V,E \ f(SB)). Namely, Bob
constructs a subgraph G′ of G where the missing edges are
the ones that correspond to his input SB . Alice constructs a
set of queries based on her input SA, in a way that we shall
specify next. To get a good protocol for LSD, Alice plays
the role of the querier, and Bob plays the role of the data
structure. Bob builds a distance oracle for the graph G′.

Now consider one query to the data structure, which asks
for d̃G′(u, v) where u and v are close to each other in G,
namely dG(u, v) = ` where ` < g

α+1 . Let pu,v be the path of
length ` between u and v in G. A query to the distance oracle
gives an answer d̃G′(u, v), which is an approximation to
dG′(u, v). We know that the girth of G′ is large, g(G′) ≥ g,
and we chose u, v to be quite close. We then get that the
query will return ≤ α` if and only if all edges on the path
pu,v are in E′, and will return a number larger than α`
otherwise.

Thus, using one query to the distance oracle we can tell
apart the case that all edges of pu,v are in E′ and the case
where at least one edge is missing. Now, if we perform k
queries of this form, we can check k paths in this way.
Therefore, using k queries we can check whether k` edges
are all in the graph, or if at least one of these k` edges is
missing. Setting NB = |E| and N = k`, this is almost the
LSD problem! By doing a standard transformation from a
data structure to a communication protocol, we connect the
parameters of the data structure to those of a protocol for
LSD: Alice sends roughly tk lg(S/k) bits to Bob, and Bob
sends roughly tkw bits to Alice.

There is one problem with this: Alice’s input may not
necessarily map to a collection of k vertex-disjoint paths of
length ` each.

There is a trick of Pǎtraşcu [26] that allows to get a lower
bound for LSD even when only a non-negligible fraction of
Alice’s inputs map to a set of vertex-disjoint paths. In short,
the trick is to allow a preliminary round of communication,
where Alice and Bob choose the bijection f from some large
set of bijections (the existence of such a set is proved using
the probabilistic method, see Claim 13). For this trick to
work, we need to guarantee that there is a large ensemble
of sets of vertex-disjoint paths in G (we refer to this as the
path-count). If the path-count is large enough, then we get a
strong lower bound. The details of this argument are in the
proof of Theorem 11.

We then consider the construction by Lubotzky et al.
(LPS) [19] of high-girth regular expanders (see Theorem 9).
To prove the main theorem, we just need to prove that the
path-count of the LPS graph is large. We prove this using
Lemma 14. Surprisingly, in proving this, we only need to use
the fact that the graph is regular and that the girth is large
(see Lemma 19). To prove Lemma 19, we count and see that
an r-regular graph has ≥ |V | (r − 1)`/2 paths of length `,
as long as ` < g(G). We then use the union bound to argue



that if we have to avoid a (1/4`)-fraction of the vertices of
the graph, we still have ≥ |V | (r − 1)`/4 paths. We thus
can count sets of paths by choosing them one at a time and
arguing that we have many options for each choice. In the
expander-based version of this lemma (Lemma 14) we use
a lemma by Alon et al. [2] (Lemma 16) to improve some
of the parameters.

Our proofs are quite modular: the main theorem follows
as a combination of Theorem 11, Lemma 14, and the
construction of LPS graphs (Theorem 9). All of these results
are relatively independent from each other, so each part of
the argument can be changed in order to prove different
things.

2. PRELIMINARIES

A class of graphs G = (V,E) is considered sparse if
|E| = Õ(|V |). In this paper, we will sometimes consider a
graph to be sparse if |E| ≤ n · poly(w, lg n).

The following is the definition of the ensemble of sets
of vertex-disjoint paths. We use this definition extensively
throughout the paper.

Definition 5. For a graph G = (V,E) and two positive
integers k, `, let P(G, `, k) be the set whose elements are
all possible sets P ⊆ E where P can be written as a union
of k vertex-disjoint paths in G, each of length exactly `.
When the context is clear, we will denote this simply by P .

In the cell-probe model [22], [32], a cell has w bits and
the space of a data structure is measured as the number of
cells it occupies, say S cells. The query time is measured
by the worst-case number of cells that a query accesses. The
most typical values are w = lg n or w = polylog(n), but
larger (or smaller) values may be interesting as well.

Note that it is impossible to prove a lower bound on
distance oracles in the cell-probe model that holds for one
particular graph G. This is due to the fact that the query
algorithm can hard-code G and can then answer queries
in constant time using a constant number of probes. Thus,
we make the following definition to capture the notion of
a graph (or rather a family of graphs) being “hard”. For a
graph G = (V,E), we say that there is a distance oracle
with space S, query time t, and stretch α for a base-
graph G if for any subgraph G′ = (V,E′) of G, where
E′ ⊆ E, a data structure can be constructed for G′ that
uses space S, and such that for any u, v ∈ V the data
structure returns in time t an estimate d̃(u, v) such that
dG′(u, v) ≤ d̃(u, v) ≤ α · dG′(u, v). When we prove a
tradeoff on the values of S, t, α, we consider this tradeoff
evidence that the base-graph G is “hard”. Most of our lower
bounds in the rest of the paper will be of this form.

In the lopsided (asymmetric) set disjointness problem
(LSD), Alice and Bob receive sets SA and SB , respectively.
Their goal is to determine whether SA ∩ SB = ∅ using
some communication protocol. Lopsided set disjointness is

parameterized by the size of Alice’s set |SA| = N and by
B, the fraction between N and the size of the universe NB.

The communication complexity of LSD was bounded by
Miltersen et al. [23] as follows:

Lemma 6 (Miltersen et al. [23]). There exists some constant
C > 0 such that in a one-sided error protocol for LSD, either
Alice sends CN lg B bits or Bob sends NBC bits.

Andoni et al. [5] extended the bound to include proto-
cols with two-sided error as well, and Pǎtraşcu [26], [27]
improved it to the following:

Lemma 7 (Pǎtraşcu [27, Thm. 1.4]). There exists some
constant C > 0 such that in a bounded error protocol
for LSD, either Alice sends CN lg B bits or Bob sends
NBC bits.

Our reduction from distance oracles to LSD implies
a lower bound for deterministic and randomized distance
oracles.

2.1. High-Girth Regular Expanders

All of our explicit lower bounds use high-girth graphs.
Some of them use high-girth expanders. We use the same
construction of Lubotzky et al. [19] both for high-girth
expanders and for “just” high-girth graphs, since it allows
us much freedom in the choice of parameters.

Definition 8 ([2], [10]). Let G = (V,E) be an r-regular
graph with n vertices. Let A be the adjacency matrix of
G, i.e. we enumerate the vertices in an arbitrary order
{v1, . . . , vn}, and set Ai,j to be 1 if (vi, vj) ∈ E and 0
otherwise. Let B = A/r, that is Bi,j = 1/r if (vi, vj) ∈ E
and Bi,j = 0 otherwise. Let λ0 ≥ λ1 ≥ . . . ≥ λn−1

be the eigenvalues of B. They do not depend on the
ordering {v1, . . . , vn}. We have that λ0 = 1. Let λ(G) =
max(λ1, |λn−1|). λ(G) is called the (normalized) second-
largest eigenvalue of G. It is a real number in the range
[0, 1]. G is called Ramanujan if λ(G) ≤ 2

√
r−1
r .

We will not heavily use expansion. The interested reader
is referred to [2], [10].

Theorem 9 (Corollary of Lubotzky et al. [19]). For every
large enough n0, r0 with n0 > 8r3

0 , there exists a graph
G = (V,E) with the following properties:

1) |V | = n with n0 ≤ n ≤ 8n0

2) G is r-regular, where r0 ≤ r ≤ 2r0

3) The girth of G is at least g(G) ≥ 1
2 lgr n

4) λ(G) ≤ 2
√

r−1
r

Proof: The graph claimed to exist is a Ramanujan graph
Xp,q as in Lubotzky et al. [19, pp. 262–263]. The graph has
n = q(q2−1) nodes and it is (p+1)-regular. The girth is at
least 2 lgp q (the girth for the other case of the Jacobi symbol
[19, Case i, p. 263] is even larger for p, q large enough).



Their construction requires unequal primes p, q congruent
to 1 mod 4. In the following, we prove their existence in
the range we need them for r and n.

The Bertrand-Chebyshev theorem states that for every
m > 1 there is always at least one prime p such that
m < p < 2m. This generalizes to some arithmetic pro-
gressions [8], [12], [24]. Breusch [8, p. 505] proves

[...] daß für x ≥ 7 zwischen x und 2x stets
Primzahlen einer jeden der vier Progressionen
3n + 1, 3n + 2, 4n + 1, 4n + 3 liegen.

that for every x ≥ 7 there is a prime of the form 4n + 1 in
the interval between x and 2x.

Since the intervals for p and q do not overlap we can
choose p and q as desired.

In short, there exist regular high-girth expanders. In fact,
we could use much weaker constructions, since for the
rest of the results, we only need g(G) ≥ Ω(lgr |V |) and
λ(G) ≤ 0.1. Any reasonable construction of regular high-
girth expanders would suffice.

3. WARM-UP

One key part in Pǎtraşcu’s result is the reduction from set
disjointness to reachability oracles. The reachability problem
is, given a sparse directed graph G = (V,E), can we
construct a data structure using less than n2 space such that
reachability queries (deciding whether there is a directed
path from u to v) can be answered efficiently?

Theorem (Pǎtraşcu [26, Thm. 2]). A reachability oracle
using space S in the cell-probe model with w-bit cells,
requires query time t = Ω(lg n/ lg Sw

n ).

Pǎtraşcu reduces a variant of LSD to the problem of
reachability queries in a butterfly graph. The following direct
reduction from reachability oracles to distance oracles yields
the same lower bound for the latter.

Lemma 10. A distance oracle with additive stretch less
than 2 using space S in the cell-probe model with w-bit
cells, requires query time t = Ω(lg n/ lg Sw

n ).

Proof: We give a reduction from reachability oracles for
the directed butterfly graph G in Pǎtraşcu’s reduction [26,
Reduction 13] to a distance oracle for the same graph,
interpreted as undirected, say G′. If node v is reachable
from u in G, the distance in G′ is equal to d; if v is not
reachable from u in G, the distance in G′ must be at least
d + 2 since the butterfly graph G′ and its subgraphs are bi-
partite. Therefore, if there is an algorithm that approximates
distances with additive stretch less than 2 using t probes in
a data structure of size S, then there is an algorithm that,
using the same t probes in the same data structure of size S,
that answers reachability queries by distinguishing distances
d and distances ≥ d + 2.

4. LOWER BOUNDS FOR APPROXIMATE DISTANCE
ORACLES AS A FUNCTION OF PATH-COUNTS

In this section we show a lower bound on the space
complexity of any approximate distance oracle on any base-
graph G, based on essentially two parameters of G: the girth
of G, and the path-count of G, which is the cardinality of
the set P(G, `, k).

In a later section (Section 5.2), we substitute a particular
graph and get the explicit lower bound stated in Theorem 1.
The theorem we prove in the current section is quite general,
and we believe it might be of future use.

We now prove that, if the path-count is large, then a strong
lower bound holds. In other words, a graph G with a large
path-count is a hard base-graph for approximate distance
oracles.

Theorem 11. Let G = (V,E) be a graph, such that an
α-approximate distance oracle exists for the base-graph G,
using query time t and space S. Let k, ` be two positive
integers, such that ` < g(G)

α+1 . Assume |E| ≥ k`(2tw/`)1/C.
Then,

S ≥ k ·

(
|P(G, `, k)|1/k`

e(|E| /k`)1−C

)`/t

/((e |E|)1/tke) .

The proof proceeds as follows: In Section 4.2 we show
how to reduce the data structure problem to a communication
problem, that is, we prove that if there exists a good data
structure then there is a good protocol for LSD. Then, in
Section 4.3, we use the LSD lower bound to show that there
cannot be a good data structure.

For the rest of Section 4, we fix the graph G = (V,E),
and the parameters w, α, t, S, k, `. And we define N =
k` and B = |E| /N . Notice that now the condition |E| ≥
k`(2tw/`)1/C implies that B ≥ (2tw/`)1/C.

4.1. Sketch of the Proof

As the computations get rather tedious in some parts,
we first sketch the calculations to provide a brief but
non-rigorous outline (various terms and approximations are
omitted).

In Section 4.2, we prove that the existence of the
data structure implies a communication protocol for
LSD where Alice sends roughly lg

(
(S/k)tkBN/ |P|

)
bits and Bob sends ktw bits. Then, in Section 4.3,
we see that ktw < NBC, so by the LSD lower
bound, Alice’s communication must be at least CN lg B.
However, Alice sends lg

(
(S/k)tkBN/ |P|

)
bits, thus

lg
(
(S/k)tkBN/ |P|

)
≥ CN lg B, and by simplifying

we get S ≥ k
(
|P| /BN(1−C)

)1/tk
. Substituting N =

k` and B = |E| /k` and simplifying, we get S ≥
k
(
|P|1/k`

/(|E| /k`)1−C
)`/t

, which is the lower bound
stated in Theorem 11.



4.2. Step 1: A data structure implies a protocol for LSD

We now prove that the data structure can be translated to
a protocol for LSD.

Lemma 12. If ` < g(G)
α+1 , then there exists a protocol for LSD

with parameters N and B, where Alice sends tk lg(eS/k)+
N lg(eB) + lg(eBN) − lg |P(G, `, k)| bits and Bob sends
ktw bits.

Proof: We begin by defining a bijection from the
universe [NB] to E. For now, any bijection will do (we will
change this later). Denote the bijection by f : [NB] → E.
Both Alice and Bob know G, so we can assume they both
know f .

Now, in the LSD problem, Alice receives a set SA ⊆
[NB] of cardinality |SA| = N , and Bob may receive any
set SB ⊆ [NB]. We now show a protocol for LSD based on
the existence of the data structure. Bob will use his set SB

to construct a set of edges, E′ = E \ f(SB). Namely, an
edge e ∈ E is in E′ if and only if its corresponding element
is not in Bob’s set SB . Bob will preprocess the graph G′ =
(V,E′) creating the data structure, and from now on, Bob
will “play” the role of the data structure. Note that G′ is a
subgraph of G, so by the assumption of Theorem 11 this
data structure has space S, query time t, and it is an α-
approximate distance oracle for G′.

Alice constructs the set P = f(SA). For now, assume that
P ∈ P(G, `, k) and call this assumption the perfect bijection
scenario; we shall remove this assumption later. Under this
assumption, P can be written as the union of k vertex-
disjoint paths, each of length `. Let (u1, v1), . . . , (uk, vk)
be the endpoints of these paths.

Now we continue describing the protocol for LSD, in the
perfect bijection scenario. For every pair (ui, vi), we know
that dG(ui, vi) = ` (it cannot be smaller since then we would
find a cycle of length ≤ 2`). Denote the path of length `
between ui and vi by p. We see that, on one hand, an α-
approximate distance query on the pair (ui, vi) will return
d̃(ui, vi) ≤ α` if all of the edges of the path p are in E′. On
the other hand, the approximate distance query will return a
number ≥ g(G)−` if at least one of the edges of p is not in
E′, since there are no cycles shorter than g(G), and since an
approximate distance oracle never returns an underestimate
of the distance, but always an overestimate or the correct
value. After querying all k distances (u1, v1), . . . , (uk, vk),
if all of the k queries return distances at most ≤ α`, then
we conclude that SA ∩SB = ∅, otherwise we conclude that
SA ∩ SB 6= ∅. Thus, all Alice and Bob need to do in order
to get an answer to LSD is to simulate k queries to the data
structure.

Now, still assuming the perfect bijection scenario, Al-
ice and Bob simulate the data structure by communica-
tion. This is standard [23], [26], but we include the de-
tails for completeness: Bob computes the data structure

itself, based on E′. Alice computes the set P and the
pairs (u1, v1), . . . , (uk, vk). Alice then considers which cells
should be probed in the first round of each of the k queries,
and sends the set of probed cells to Bob. Note that we send
it as a set, not one by one. This set can be sent using lg

(S
k

)
bits. Bob replies with the contents of these cells, using wk
bits. Now Alice sends the set of cells that should be probed
in the second round, using another lg

(S
k

)
bits, and then Bob

replies, using another wk bits, and so on. Overall, Alice
sends t lg

(S
k

)
≤ t · lg

(
eS
k

)k
= tk lg(eS/k) bits, and Bob

sends wtk bits. We remark that it is important to send the
set of cells to be probed as a set, taking lg

(S
k

)
bits, rather

than one by one, taking k lgS bits. The latter would cause
the lower bound to become so weak as to be meaningless
(the same is necessary in Pǎtraşcu’s lower bound [27]).

Now we want to get rid of the perfect bijection assump-
tion. To do this, we include a round of communication that
is performed before starting the protocol. This round of
communication will choose the bijection f such that the
perfect bijection scenario holds for this particular f . Alice
encodes the bijection and sends lg(ln

(
(eB)N

)
· (eB)N

|P| ) bits
to Bob, who sends 0 bits to Alice. To do this, instead of
having only one bijection f : [NB] → E at the start, Alice
and Bob share knowledge of m bijections, f1, . . . , fm, all
from [NB] to E. These bijections must have the property
that for any set SA ⊆ [NB] of cardinality N , there exists an
i such that choosing f = fi puts us in the perfect bijection
scenario, that is, ∃i ∈ [m] : fi(SA) = P(G, `, k). If we
find such a family of bijections, then Alice and Bob can get
to the perfect bijection scenario by sending lg m bits – the
index of the bijection they use – and then continue as before.
Recall that Alice and Bob share all f1, . . . , fm beforehand,
without exchanging any communication.

The existence of such a family of bijections is proved in
the following claim using the probabilistic method. It is a
tailored restatement of Pǎtraşcu [26, Lemma 11].

Claim 13. There exists a set of bijections, f1, . . . , fm :
[NB] → E, where m = ln

(
(eB)N

)
· (eB)N

|P| , such that for
each SA ⊆ [NB] with |SA| = N , there exists a bijection fi

such that fi(SA) ∈ P(G, `, k).

Proof: Fix some SA of cardinality N . Let h be a
randomly-chosen bijection from [NB] to E. The probability
that h(SA) ∈ P is q = |P| /

(|E|
N

)
≥ |P| /(eB)N .

Let m′ = ln
(
(eB)N

)
. Note that em′

is an upper bound
on the number of sets SA ⊆ [NB] of cardinality N . Thus,
consider m = m′/q bijections selected uniformly at random.
The probability that all of them fail to map SA to an element
of P is (1−q)m′/q < e−m′

= (eB)−N . By the union bound,
we get that a set of m′/q randomly-chosen permutations has
probability > 0 to have the property in the lemma. Thus
there is such a set.



Thus, we got an LSD protocol where Alice sends lg N +
lg ln(eB) + N lg(eB)− lg |P(G, `, k)| bits (in order to get
to the perfect bijection scenario) and then she sends another
tk lg(eS/k) in the perfect bijection scenario, and Bob sends
tkw bits. By using the inequality lg N + lg ln(eB) ≤
lg(eBN) the lemma follows.

4.3. Step 2: The lower bound for LSD implies a lower bound
for distance oracles

We have seen that a good data structure implies a good
communication protocol. However, there is a lower bound
on the communication problem LSD (Lemmas 6 and 7). We
use it to derive a lower bound on the space usage of distance
oracles.

Recall that if a protocol computes LSD with parameters
N and B, then either Alice sends at least CN lg B bits or
Bob must send at least NBC bits (Lemma 7).

We saw that Bob’s communication is tkw. However,
by the condition of Theorem 11, B ≥ (2tw/`)1/C, so
NBC ≥ k` · 2tw/` = 2ktw. Thus, Bob’s communication is
strictly less than NBC bits. From the lower bound on LSD,
it follows that Alice must communicate at least CN lg B
bits. Substituting all we know so far, this means that

tk lg(eS/k) + N lg(eB) + lg(eBN)− lg(|P|) ≥
≥CN lg B .

Use N = k` and move terms around to get

lg(eS/k) ≥ lg
(
(|P|)1/tk

)
+

C`

t
lg B

− `

t
lg(eB)− lg(eBN)/tk .

Exponentiating and moving terms around, we get

eS/k ≥ (|P|)1/tk(eB1−C)−`/t · (eBN)−1/tk ,

or equivalently,

S ≥ k ·

(
|P|1/k`

eB1−C

)`/t

· ((eBN)−1/tk/e) ,

which is what we wanted to prove.

5. COUNTING PATHS IN REGULAR HIGH-GIRTH
EXPANDERS

To prove Theorem 1, we need to count paths in regular
high-girth expanders. We use such expanders with degree
poly(wtα/ lg n). The expression wtα/ lg n could be o(1),
in which case the degree will be O(1).

For a reader who is not interested in expander graphs, or
who is dealing with regular high-girth graphs that might not
be expanders, Section 6 contains analogues of the results of
this section, which are almost as strong, and do not require
good expansion.

We are interested in lower-bounding the cardinality of
P(G, `, k) when G is a high-girth expander.

Lemma 14. Let G = (V,E) be an r-regular graph and
k, ` be two positive integers, such that the following three
conditions hold: (i) λ(G) ≤ 0.1; (ii) |V | ≥ 20k`; (iii)
` < g(G), then

|P(G, `, k)| ≥
(
|V |
k

)
· (r/8)k` .

Proof: Denote N = k · `. As a warm-up, we first count
the number of ways to choose just one path. We know that
` is smaller than the girth of G, so there are exactly |V | ·
(r− 1)`/2 ways to choose a path of length `, since we can
start at any vertex and we are allowed to progress to any of
the neighbors, but not to backtrack. We divide by two since
we counted each path twice: each path can be started from
both of its endpoints.

To count collections of vertex-disjoint paths, we choose
the k paths one by one and prove that, no matter which
paths we already chose, there are at least |V | · (r/8)` ways
to choose the next one. The difficulty in proving this is that
after choosing some of the paths, there are some vertices
that we are not allowed to use anymore.

Suppose that we are constructing a member of P and we
have already chosen some of the paths, and used the vertices
A ⊆ V (where |A| < N + k ≤ 2N ). We are not allowed to
use these vertices again, since the paths need to be vertex-
disjoint. We claim that:

Claim 15. Let G = (V,E) be an r-regular graph and k, ` be
two positive integers, such that the following three conditions
hold: (i) λ(G) ≤ 0.1; (ii) |V | ≥ 20k`; (iii) ` < g(G). Let
A ⊆ V be a set of vertices of cardinality ≤ 2N . Then the
number of different paths of length ` in G that do not use
any vertices of A is at least |V | · (r/8)`.

Before proving this claim, we show how it yields the
lemma. By repeatedly using Claim 15, we get that the total
number of ways to choose k paths of length ` each is at
least (

|V | · (r/8)`
)k

/k! = |V |k · (r/8)N/k! .

The k! factor in the denominator arises since we potentially
counted each collection k! times: we have chosen the paths
in different orders, while the order of choosing the paths
should not matter. So, the cardinality of P is at least

|V |k · (r/8)N

k!
≥
(
|V |
k

)
· (r/8)N .

. Thus, if we prove Claim 15 then Lemma 14 follows.
We now prove the claim.

Proof of Claim 15: The set A of disallowed vertices is
of cardinality ≤ 2N . Assume w.l.o.g. that A is of cardinality
exactly 2N (this only makes our situation worse than it
really is).



Now, choose a path of length ` in G by a random walk:
start at a uniformly random vertex, and at each step, pick
a random outgoing edge except the one we came through.
Since the girth is larger than `, then the path that we choose
this way is a simple path. There are exactly |V |·(r−1)`/2 ≥
|V |·(r/4)` paths that can be produced this way and each one
is produced exactly twice (once from each direction), so we
just need to estimate the probability that this path manages
to avoid A. It is enough to prove that this probability is
≥ 1/2`.

If the ` + 1 vertices in the path were chosen uniformly
and independently from V , then this would be trivial.
Fortunately, since G is an expander, then a random walk
on it “behaves like” a set of independently-chosen vertices
in various aspects, including the aspect we need, as shown
by Alon et al. [2]:

Lemma 16 (Alon et al. [2]). Let G = (V,E) be an r-regular
graph. Let W1, . . . ,W`+1 ⊂ V be some sets of vertices (that
may be equal to each other), each of cardinality at least
µ |V |, and suppose that µ ≥ 6λ(G). The probability that a
random walk of length ` stays inside W1,W2, . . . ,W`+1 is
at least µ(µ− 2λ(G))`−1.

In our case, set all Wi’s equal to V \A. Set µ = 0.9. We
know that λ(G) ≤ 0.1 so the conditions of Lemma 16 hold,
and thus the probability that the walk stays inside V \A for
all of the steps is at least 0.9 · 0.7`−1 ≥ 1/2`.

5.1. Lower Bound for Base-Graphs that are High-Girth
Regular Expanders

We now combine Lemma 14 with Theorem 11 to get a
lower bound for any regular expander base-graph, based only
on its degree and girth. The following theorem may be of
independent interest.

Theorem 17. Let G = (V,E) be an r-regular expander
graph with |V | = n vertices. Suppose there is a distance
oracle for a base-graph G that uses space S, query time t,
and achieves stretch α. Assume w = no(1), g(G) ≥ 2α,
λ(G) ≤ 0.1, and r ≥ (4twα/g(G))1/C. Then, S ≥
nrΩ(g(G)/αt)/ lg n.

Proof: The proof requires some tedious calculations,
and not much else. We assume w = no(1), but in fact the
calculations below can be generalized to even larger word
size: up to w = nc where c is some small constant.

Let ` = bg(G)/2αc ≤ lg n. Let k = |V | /20`.
By Lemma 14, it holds that |P(G, `, k)| ≥ (r/8)k`. To ap-

ply Theorem 11, we need to check that |E| ≥ k`(2tw/`)1/C.
This can be seen by |E| = |V | · r/2 = 10k` · r ≥ 10`k ·
(2tw/`)1/C. So, we get that the conditions for Theorem 11
hold.

Now we apply Theorem 11 and get that

S ≥ k ·

(
|P(G, `, k)|1/k`

e(|E| /k`)1−C

)`/t

/((e |E|)1/tke) .

Now, |E| ≤ |V |2 ≤ (`k)4 ≤ k8. Thus, the term
(e |E|)1/tke in the bound is Θ(1), and we can ignore it. Fur-
thermore k ≥ n/ lg n, and we know that |P(G, `, k)|1/k` ≥
r/8. Dropping constants where they are irrelevant, we get
that

S ≥ n

lg n
·
(

r

(|E| /k`)1−C

)Ω(`/t)

.

Now, (|E| /k`)1−C = (10r)1−C. Thus we get

S ≥ n

lg n
·
( r

r1−C

)Ω(`/t)

.

Substituting ` = Θ(g(G)/α), we get the theorem.

5.2. Proof of the Main Theorem

We now combine the LPS construction with Theorem 17
to get the main result of the paper.

Theorem 18. Let S(n), α(n), t(n), w(n), be such that there
exists a distance oracle for any graph with n vertices, which
has stretch α, uses query time t, and space S with word-size
w. Assume α = o

(
lg n

lg(w lg n)

)
. Then S ≥ n1+Ω(1/tα)/ lg n.

This even holds when restricted to graphs with maximum
degree poly(twα/ lg n).

Proof: Let n0 be some asymptotically-large number.
Let r0 = max{(8twα/ lg n0)2/C, 400, (4/C)4/C}. Apply
Theorem 9 to these two numbers. This gives a graph
G = (V,E) with:

• n0 ≤ |V | ≤ 8n0

• G is r-regular where r0 ≤ r ≤ 2r0

• g(G) ≥ 1
2 lgr0

n0

• λ(G) ≤ 0.1 (since r0 ≥ 400).
Apply Theorem 17 to this graph. Then

S ≥ n0r
Ω(g(G)/αt)
0 / lg(2n0) .

Using the fact that r
g(G)
0 ≥ √

n0 and that n = Θ(n0), r =
Θ(r0) we get the theorem.

We need to check that Theorem 17 can indeed be applied.
This is somewhat tedious. λ(G) ≤ 0.1 is known from the
construction of G. w = no(1) holds because if w = nΩ(1)

then the condition α = o
(

lg n
lg(w lg n)

)
implies α = o(1).

To see that g(G) ≥ 2α, begin by observing that α ≤ lg n

because of the condition α = o
(

lg n
lg(w lg n)

)
. Furthermore,

we can assume that t ≤ lg n, otherwise the term n1/tα is
equal to Θ(1) and we could then derive the bound S ≥
Ω(n) by setting ` = 1, k = n/20, r = w and proceeding
as before (or just using the Thorup-Zwick proof technique).



From α ≤ lg n and t ≤ lg n we get r0 ≤ poly(w lg n). We
then see that g(G) ≥ Ω(lgr0

n0) ≥ Ω
(

lg n
lg(w lg n)

)
> α.

Finally, to see that r ≥ (4twα/g(G))1/C, observe that
r ≥ (4/C)4/C and for any such r it holds that (lg r)1/C ≤√

r. Now,

(4twα/g(G))1/C ≤ (8twα lg r/ lg n0)1/C

≤ (8twα/ lg n0)1/C · (lg r)1/C

≤ (8twα/ lg n0)1/C ·
√

r

≤
√

r ·
√

r = r.

We thus proved that all conditions of Theorem 17 hold.

6. COUNTING PATHS IN REGULAR HIGH-GIRTH GRAPHS

In the proof of Theorem 18 we used expander graphs
with degree poly(wtα/ lg n). Instead of this, we can prove
a similar theorem with a slightly worse bound on the degree
(namely, poly(w, lg n)), but without using expansion prop-
erties. This section follows the same outline as Section 5.

Lemma 19. Let G = (V,E) be an r-regular graph and
k, ` be two positive integers, such that the following two
conditions hold: (i) |V | ≥ 8k`2; (ii) ` < g(G), then

|P(G, `, k)| ≥
(
|V |
k

)
· (r − 1)k`/4k .

The proof of this lemma is very similar to the proof of
Lemma 14, except that Claim 15 is replaced by Claim 20.
Thus, we skip the proof, and just state and prove Claim 20.

Claim 20. Let G = (V,E) be an r-regular graph and k, ` be
two positive integers, such that the following two conditions
hold: (i) |V | ≥ 8k`2; (ii) ` < g(G). Let A ⊆ V be a set of
vertices of cardinality ≤ 2N . Then the number of different
paths of length ` in G that do not use any vertices of A is
at least |V | · (r − 1)`/4.

Proof: The set A of disallowed vertices is of cardinality
≤ 2N . Assume w.l.o.g. that A is of cardinality exactly 2N
(this only makes our situation worse than it really is).

Now, choose a path of length ` in G by a random walk:
start at a uniformly random vertex, and at each step, pick
a random outgoing edge except the one we came through.
Since the girth is larger than `, the path chosen this way
is a simple path. There are exactly |V | · (r − 1)`/2 paths
that can be produced this way and each one is produced
exactly twice (once from each direction), so we just need to
estimate the probability that this path manages to avoid A.
It is enough to prove that this probability is ≥ 1/2.

Think of the path as a sequence of `+1 random variables.
The graph is an undirected regular graph, thus each of these
random variables is uniformly distributed over V , but they

depend on each other of course.2 We can use the union-
bound to see that the probability that none of these vertices
are in A is at least 1 − (` + 1) · |A||V | ≥ 1 − 2` · 2k`

8k`2 = 1
2 ,

and this concludes the proof.

6.1. Lower Bound for High-Girth Regular Base-Graphs

We can now combine Lemma 19 with Theorem 11 to
get a lower bound for any regular base-graph based only
on its degree and girth. The following theorem may be of
independent interest.

Theorem 21. Let G = (V,E) be an r-regular graph
with |V | = n vertices. Suppose there is a distance oracle
for base-graph G that uses space S, query time t, and
achieves stretch α. Assume w = no(1), g(G) ≥ 2α, and
r ≥ (4twg(G)/α)2/C. Then, S ≥ nrΩ(g(G)/αt)/ lg2 n.

We skip the proof of this theorem due to space restrictions.
Its proof is very similar to the proof of Theorem 17.

Using Theorem 21 together with the LPS construction
from Theorem 9, we can get the following theorem, which
is similar to the main result of this paper. This theorem has
somewhat weaker parameters than the main results and the
proof is similar to that of Theorem 18.

Theorem 22. Let S(n), α(n), t(n), w(n), be such that there
exists a distance oracle for any graph with n vertices, which
has stretch α, uses query time t, space S, and word-size w.
Assume α = o

(
lg n

lg(w lg n)

)
. Then S ≥ n1+Ω(1/tα)/ lg2 n.

This even holds when restricted to graphs with maximum
degree poly(tw).
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