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Abstract—We describe an algorithm for stochastic path plan-
ning and applications to route planning in the presence of traffic
delays. We improve on the prior state of the art by designing,
analyzing, implementing, and evaluating data structures that an-
swer approximate stochastic shortest-path queries. For example,
our data structures can be used to efficiently compute paths that
maximize the probability of arriving at a destination before a
given time deadline.

Our main theoretical result is an algorithm that, given a
directed planar network with edge lengths characterized by
expected travel time and variance, pre-computes a data structure
in quasi-linear time such that approximate stochastic shortest-
path queries can be answered in poly-logarithmic time (actual
worst-case bounds depend on the probabilistic model).

Our main experimental results are two-fold: (i) we provide
methods to extract travel-time distributions from a large set of
heterogenous GPS traces and we build a stochastic model of an
entire city, and (ii) we adapt our algorithms to work for real-
world road networks, we provide an efficient implementation,
and we evaluate the performance of our method for the model
of the aforementioned city.

I. INTRODUCTION

We present and evaluate a new algorithm for planning the
path of vehicles on roadways in the presence of uncertainty
in traffic delays. We build on prior work on stochastic path
planning [15, 19, 20], which introduces stochastic path plan-
ning algorithms in this model. This prior work presents novel
provably correct algorithms that are well suited for planning
the path of a vehicle on small-scale graphs; however, the
computational complexity of this prior suite of stochastic path
planning algorithms makes these algorithms impractical to use
for real-time path planning on city-scale road networks.

The stochastic path planning model incorporates traffic his-
tory in the form of probability distributions of delays observed
on actual road segments. The probability distributions capture
the historical delay observations that are assigned as weights
on the edges of the road network. The stochastic path planning
algorithm minimizes a user-specified cost function of the delay
distribution. Current route planning methods can produce
routes with shortest expected time (based on historical traffic
data) and some recent commercial systems, using almost-real-
time data based on cell-phone locations [22, 26], can also
compute “smartest” routes in dynamic traffic scenarios. The
algorithm in this paper improves on and extends previous work
by enabling fast routes guaranteed to maximize the likelihood

Fig. 1. Path query example for maximizing the probability of reaching the
destination within a user-specified deadline. Our system finds such a path
within milliseconds for a city-sized network. When a user at origin ‘O’ wants
to get to destination ‘D’ within 30 minutes between 5pm and 6pm on a
weekday, the blue path offers the best chance of reaching the destination
within the deadline. However, when the deadline changes to 20 minutes, the
blue path has less than a 50% chance for making the deadline. In this case,
the red path is the best route, offering a 88.5% chance for on-time arrival.

of arriving at a destination within a specified deadline in city-
scale route graphs. This work provides a planning system
that can be used by autonomous as well as human-driven
vehicles for traffic routing applications that meet travel goals
such as “when should you leave, and what path should you
take, to reach the destination by the given deadline with
high probability?” Preserving the inherently non-deterministic
nature of actual traffic, we work with accurate probabilistic
models of traffic-intense areas — in our work, we actually
build a probabilistic model of an entire city based on a large
set of heterogenous GPS traces.

Our Contributions: The algorithm in this paper improves
the state of the art on stochastic path planning [18, 19, 20]
and its application to traffic routing [15]. The running time
of the state-of-the-art stochastic-shortest-path algorithm is
approximately quadratic in the number of nodes, rendering
it too slow for real-time performance on city-scale networks.
We improve upon their running time by using efficient data
structures. In contrast to previous work [18], we provide a
two-phase algorithm, consisting of preprocessing and query
algorithms, better suited for practical implementations. Our
preprocessing algorithm runs in quasi-linear time and it does
not depend on the origin-destination pair or on the deadline,
which is the main theoretical challenge. Our query algorithm



runs in sublinear time (whereas the algorithms in [15] run
in polynomial time). The running time is polylogarithmic,
offering exponential speedups over previous algorithms and al-
lowing for almost instantaneous response times (see Lemma 1
and Theorem 3 for details).

We have implemented the algorithms described in this
paper and packaged them as a route planning system. We
evaluated the system using the road map of an entire city.
Using GPS traces from a large fleet of taxis (approximately
16,000 vehicles), we extract a time-dependent, probabilistic
model for each individual road segment. Our algorithms
preprocess the road network equipped with probabilistic edge
lengths into a data structure. Using this data structure, our
query algorithm can efficiently answer approximate stochastic
shortest-path queries. Our experiments validate the theoretical
performance predictions, showing improvements upon existing
query algorithms by several orders of magnitudes.

II. BACKGROUND

A. Stochastic Shortest Paths

In this section, we provide a brief overview of the stochastic
shortest-paths problem and known results, extracted from [18].

Consider a graph G with a given source node s and
destination node t with stochastic edge delays we that come
from independent distributions with means and variances
(µe,τe), respectively. Denote the vector of edge delays by
w = (w1, ...,w|E|) and the corresponding vectors of edge
means and variances by µ = (µ1, ...,µ|E|) and τ = (τ1, ...,τ|E|).
Denote the incidence vector of a path by x∈{0,1}|E| with ones
corresponding to edges present in the path and zeros otherwise.
Let the feasible set of s-to-t–paths be F ⊂ {0,1}|E|.

Given the uncertainty of edge delays, it is not immediate
how to define a stochastic shortest path: is it the path that
minimizes mean delay? Or should it minimize path variance
or some other metric? Risk-averse users would naturally care
about the variability in addition to mean delays. Two risk-
averse models that have been previously considered are the
mean-risk model and the probability-tail model, which we
describe below.

The algorithms for both models make black-box calls to
the underlying deterministic shortest-path algorithm, which
computes

min wT x subject to x ∈F . (1)

a) A Mean-Risk Model: In this model, we seek the path
minimizing mean delay plus a risk-aversion coefficient c≥ 0
times the path standard deviation, more formally:

minimize µ
T x+ c

√
τT x subject to x ∈F . (2)

This is a non-convex combinatorial problem, which can be
solved exactly by enumerating all paths that minimize some
positive combination of mean and variance (the latter is a de-
terministic shortest-path problem with respect to edge lengths
equal to the corresponding mean–variance linear combination)
and selecting the one with minimal objective (2) (see [18, 20]

for more details). The number of deterministic shortest-path
iterations is at most nO(logn) in the worst case [20]. Further-
more, there is a fully-polynomial-time approximation scheme
(FPTAS) for the problem, as stated in the following theorem:

Theorem 1 ([18, Theorem 4.1]): Suppose we have a δ–
approximation algorithm for solving the deterministic shortest-
path problem (1). For any ε > 0, the mean-risk model (2)
can be approximated to a multiplicative factor of δ (1 + ε)
by calling the algorithm for the deterministic shortest-path
problem polynomially many times in the input size and 1/ε .

In other words, one can use both exact (δ = 1) and δ–
approximate (for any δ > 1) shortest-path subroutines and
obtain a corresponding approximate risk-averse solution.

b) Probability-Tail Model: In this model, we are given
a deadline d and we seek the path maximizing the proba-
bility of arriving before the deadline: maximize Pr(wT x ≤
d) subject to x∈F . This model assumes normally-distributed
edge delays in order to obtain a closed-form expression for the
probability tail. In particular, when w is Gaussian, the problem
is transformed into the following formulation [18]:

maximize
d−µT x√

τT x
subject to x ∈F . (3)

Similarly to the mean-risk model, problem (3) can be solved
exactly in time nO(logn) [20] and it can be approximated as
follows:

Theorem 2 ([18, Theorem 4.2]): Suppose we have a δ–
approximation algorithm for solving the deterministic shortest-
path problem (1). For any ε > 0, the probability tail model (3)

has a
√

1−
[

δ−(1−ε2/4)
(2+ε)ε/4

]
–approximation algorithm that calls

the algorithm for the deterministic shortest-path problem poly-
nomially many times in 1/ε and the input size, assuming the
optimal solution to problem (3) satisfies µT x∗ ≤ (1− ε)d for
a user-specified deadline d.

In our scenario, one main objective is to minimize the
running time of the overall procedure at query time and hence
the running times of these shortest-path subroutines are of high
priority.

B. Approximate Distance Oracles

An (approximate) distance oracle is a data structure that
efficiently answers shortest-path and/or distance queries in
graphs. Relevant quantities of a distance oracle include the
preprocessing time, which is the time required to construct the
data structure, the space consumption, the query time, and, for
approximate distance oracles, the stretch, which is the worst-
case ratio among all pairs of query nodes of the query result
divided by the actual shortest-path distance. Approximate
distance oracles using quasi-linear space for poly-logarithmic
query time and stretch (1 + ε) are known for planar [24]
(implementation in [16]), bounded-genus [14], minor-free [1],
geometric [13], and bounded-doubling-dimension graphs [4].
For realistic traffic scenarios, we need the distance oracle to
work with directed graphs (also called digraphs). For planar
digraphs, Thorup [24] gave an approximate distance oracle that



occupies space O(nε−1 log(nL) log(n)) and answers (1 + ε)–
approximate distance queries in time O(ε−1 + log log(nL)),
where L denotes the largest integer length (see [14] for
different tradeoffs between space and query time).

At a high level, Thorup’s method works as follows. The
preprocessing algorithm recursively separates the graph into
subgraphs of approximately equal size. Shortest paths are used
as separators. For planar graphs, it is possible to separate the
graph into two roughly balanced pieces by using three shortest
paths Q1,Q2,Q3. Next, the preprocessing algorithm considers
each node v ∈ V and it computes O(1/ε) portals for v on
each separator path Qi such that the shortest path from v to
each node q ∈ Qi is approximated within a (1 + ε)–factor by
going through one of the portals. Since each node only needs
to remember O(1/ε) distances to portals per level, and since
each node participates in O(logn) levels, the overall space
complexity per node is bounded by O(ε−1 logn). For directed
planar graphs, the construction is more involved and the space
and time complexities are slightly higher.

Fig. 2. For each node v we have O(1/ε) portals on each separator path Q
such that the shortest path from v to each node q ∈Q is approximated within
a (1+ ε)–factor by going through one of the portals. Note that two nodes u
and v may not necessarily use the same set of portals.

Furthermore, many efficient practical methods have been
devised [5, 10, 21], their time and space complexities are
however difficult to analyze. Competitive worst-case bounds
have been achieved under the assumption that actual road
networks have small highway dimension [2, 3]. We point
out one particular method, which is in some sense related
to our construction. Geisberger, Kobitzsch, and Sanders [11]
provide a heuristic shortest-path query method with edge
lengths defined as a customizable linear combination of two
edge length functions (this linear combination, however, is not
arbitrary, which is why we cannot use their data structure).

III. STOCHASTIC MOTION PLANNING WITH SPARSE
PRECOMPUTED DATA

A. Overview

We provide a new stochastic path planning algorithm and
its implementation in a real traffic network. The main research
objective is to minimize the time for querying a path. Algo-
rithms studied in [15, 20] find an exact solution by iteratively
determining the parameter value k that governs the edge length
`(e) := k · µ(e) + τ(e) in terms of mean µ and variance τ .
Such parameter values depend on a specific problem instance,
defined by a deadline or a risk-aversion coefficient. We de-
velop a method that finds a set of parameter values for the

entire network, independent of the specific problem, and that
provides guaranteed approximation accuracy for all choices
of parameters simultaneously. We show that it suffices to
maintain only a small set of parameters, which allows for small
storage and efficient preprocessing. We preprocess the network
using this set of parameter values.

We implement the deterministic shortest-path algorithms
required in [18] using a distance oracle, as described in
the previous section. This allows for fast query times. The
preprocessing algorithm, while taking quasilinear time, is
executed only once and the data structure can be computed
on a powerful machine (not necessarily the machine where the
query algorithm is run on). One important technical difference
compared to the method described in [15] is that we cannot use
an adaptive algorithm at query time, since the preprocessing
algorithm must prepare for each step that might get executed
at query time. In other words, the preprocessing algorithm
must prepare for all possible query pairs (s, t) ∈ V ×V , and,
potentially, deadline parameter values d ∈ R. While such
preprocessing algorithms are standard for classical graph dis-
tances, adaptations are necessary for stochastic shortest paths.

B. Preprocessing Algorithm
We adapt the algorithms in Theorem 1 and Theorem 2 to

our scenario, where we have access to an approximate oracle
for the deterministic shortest-path problem with edge lengths
e 7→ k · µ(e)+ τ(e) for some k ∈K . In previous work [18],
the aim was a polynomial-time algorithm and shortest-path
problems could be computed in quasi linear time for any value
k. Since we aim at sublinear query time, the queries made to
the oracle need to be non-adaptive, or at least restricted to
a small set of possible queries K . We can then precompute
distance oracles for all these values k ∈K . On a high level,
the preprocessing algorithm is rather simple.

Algorithm 1: PREPROCESS

Data: G = (V,E) with given lengths µ,τ : E→ R+

Result: distance oracles orck for each k ∈K
compute the set K ;
for k ∈K do

orck← build (approximate) distance oracle for length
function e 7→ k ·µ(e)+ τ(e);

end

Note that this preprocessing algorithm can be parallelized
in a straightforward way. Since there are no dependencies
between the oracles constructed for different values of k,
the preprocessing algorithm can also make use of multi-core
architectures.

As an immediate consequence, we obtain the following:
Claim 1: The preprocessing time is bounded by O(|K | ·

P), where P denotes the preprocessing time of the deter-
ministic distance oracle.

A main technical contribution of this work is showing how
to compute (and analyze) this set K . The size of K mostly
depends on the user’s choice of ε .



We run the deterministic preprocessing algorithm for the
graph with edge lengths `k(e) = k · µ(e) + τ(e) for k ∈{

L,(1+ξ )L,(1+ξ )2L, . . .U
}

for ξ ,L,U to be defined for
each model. Also, the approximation parameter ε we use for
the preprocessing algorithm in the distance oracle changes
with the model.

1) A Mean-Risk Model: Using a δ–approximate distance
oracle, the end result is a δ (1+ε)–approximation. Therefore,
when asking for a (1+ ε)–approximate answer, we internally
set εint := ε/3, since, for ε < 1/2, we have that (1+ ε/3)2 ≤
1+2ε/3+ ε2/9≤ 1+ ε . In the following, we write ε instead
of εint . Next, we set ξ , L, and U as follows.

ξ =
√

ε

1+ ε

L = min
e

τ(e)

U = ∑
e

τ(e)≤ n ·max
e

τ(e)

Alternatively, U can be set to the largest possible variance of
any path. We have that the total number of values k is at most

|K |= log1+ξ (U/L) = O
(

log
(

n
maxτ(e)
minτ(e)

)
/
√

ε

)
.

As a consequence, we obtain the following lemma.
Lemma 1: For any graph G = (V,E) and for any two length

functions µ : E → R+ and τ : E → R+, there exists a set K

of size |K | = O
(

ε−1/2 log
(

n maxτ(e)
minτ(e)

))
such that mean-risk

shortest paths can be approximated by a shortest path in G
with length function `k(e) = k ·µ(e)+ τ(e) for some k ∈K .

2) Probability-Tail Model: For the probability-tail model,
we follow the same strategy as in the previous section,
based on the proof of [18, Lemma 3.4], showing that, in the
mean–variance plane, any fixed parabola (also termed level
set) with apex (d,0) can be ε–approximated by a piecewise
linear curve (see [18, Figure 1(b)] for an illustration) using
few line segments. We exploit this ε–approximation in our
algorithm. Furthermore, we define level sets irrespective of
the deadline d: we may actually define K for any value of d
— for a given query deadline d′, the actual parabolas are just
shifted to the left or to the right. Each segment defines a slope
value k and the union of all these slope values (their absolute
value, actually) is our set of slopes. Note that shifting the
parabola to the left or to the right does not affect these slopes.
We set ξ , L, and U as follows.

ξ = ε/2

L =
2mine τ(e)

dL

U =
2∑e τ(e)

εdU
≤ 2nmaxe τ(e)

εdU
≤ 2nmaxe τ(e)

ε mine µ(e)

Although the user may choose to query the data structure
for an arbitrarily large deadline d, we can give an upper bound
on dL = maxd as follows. As soon as the deadline is so large
that shortest paths do not change anymore, we do not have to
consider larger values of d. In a straightforward way, dL can be

computed by computing all-pairs shortest paths for increasing
values of d. Alternatively, again for increasing values of d, a
2–approximation of the diameter can be found in linear time.

C. Query Algorithm
The simplest version just tries all values k ∈K .

Algorithm 2: QUERY

Data: G = (V,E) with given lengths µ,τ : E→ R+;
distance oracles orck for each k ∈K ; origin O,
destination D, and mean risk coefficient c or
deadline d depending on the risk model

Result: Approximately Optimal Path p
p← NIL;
for k ∈K do

q← f ind path(O,D,orck) ;
if ( meanRisk and q.µ + c

√
q.τ < p.µ + c

√
p.τ)

or ( probTail and d−q.µ
q.τ > d−p.µ

p.τ ) then
p← q;

end
end
return p;

Claim 2: The query time is bounded by O(|K | ·Q), where
Q denotes the query time of the deterministic distance oracle.

Combined with Claim 1, we obtain our main theorem.
Theorem 3: There is a data structure that can be computed

in time O(|K | ·P), occupying space O(|K | ·S ), and an-
swering approximate stochastic shortest-path queries in time
O(|K | ·Q), where P,S ,Q denote the preprocessing, space,
and query complexities of the deterministic distance oracle,
respectively.
In the practical part, we also have a heuristic that binary
searches for the optimal value in K , resulting in faster query
times.

Plugging in the distance oracle of Thorup [24], we obtain
our main result. We state it in the mean-risk model. An
analogous bound holds for the probability-tail model.

To apply [24, Theorem 3.16], we set the largest integer
length N(k) := max

e∈E
k ·µ(e)+ τ(e) for each preprocessing step

k ∈K . Also, let τ̄ = maxτ(e)
minτ(e) .

Corollary 1: For any directed planar graph, there
exists a data structure that can be computed in time
O(n(log(nτ̄))(lg(nN))(lgn)3ε−5/2), occupying space
O
(
n · ε−3/2(lgn)(lg(nN))(log(nτ̄))

)
, such that approximate

stochastic shortest-path queries can be answered in time
O(ε−1/2 log(nτ̄) lg lg(nN)+ ε−3/2 log(nτ̄)).
The space can be reduced at the cost of increasing the query
time by using the construction in [14]. In particular, for
scenarios where memory is scarce (e.g. on mobile devices),
one can obtain a linear-space data structure. Note that the
preprocessing algorithm can be executed on a powerful com-
puter and not necessarily on the mobile device. The query time
remains poly-logarithmic.



IV. STOCHASTIC TRAFFIC MODEL BASED ON GPS TRACES

We compute a stochastic model of an entire city using
the following process. We start with a heterogeneous set of
approximately 500M anonymized GPS points. Grouped by
individual vehicles, we extract those traces (subpaths), for
which the sampling frequency is sufficiently high (at least one
data point every thirty seconds). For each trace, we employ
map-matching algorithms to compute the sequence of road
segments that has the largest likelihood to have been used
by this particular trace. The process of matching GPS traces
data into a map has been investigated before [12, 27]. To
overcome the noise and sparsity of GPS data, a map matching
method based on the Viterbi algorithm was suggested in [17].
We use their method for our dataset. Since we do not have
the groundtruth for our dataset, the correctness of the map-
matching step cannot be verified. It is actually rather unlikely
that all traces are mapped to the correct sequence of road
segments. We assume that our dataset is large enough such
that the majority of traces is mapped to correct road segments.
We determine the speed of each vehicle per road segment and
we sort all the values for each road segment by time. We then
bin speed values into one-hour intervals for each day of the
week. Using standard statistics, we compute the sample mean
and standard deviation for the speed and travel time for each
bin.

For examples of distributions for different road segments
and different times of the day, see Fig. 3.

V. PRACTICAL CONSIDERATIONS

We adapt our method for planar networks so that it can
efficiently handle the actual road network models we use in
our experiments.

A. Non-planarities

Our network is not exactly planar and many real-world road
networks may be non-planar [8]. The internal algorithms of
the distance oracle use separator paths, which are sensitive
to non-planarities (crossings). We propose to address most of
these non-planarities as follows (inspired by similar construc-
tions for minor-free graphs [1]). On the highest level of the
recursion, instead of using two shortest paths to separate the
graph, (i) we interpret the set of express ways (cf. highways)
as a set of separator paths, (ii) we compute portals for each
separator path Q and each node v, (distances to portals are
computed with respect to the entire graph) and (iii) we remove
the set of express ways from the graph. The highest level of
the recursion handles all paths that use any part of an express
way. The remaining graph has only few further crossings.

Turn restrictions: For some intersections, particularly in
urban settings, it may not be possible to make a left turn due
to a turn restriction, or it may just be more time-consuming to
make a left turn, which can be modeled by a turn cost. Turn
costs can be taken considered by modeling each road segment
by a node of the graph, and then connecting only those
nodes whose corresponding road segments can be traversed in
sequence [7, 28]. Such a transformation increases the number

of nodes [9] and, more importantly for our oracles, it also
violates planarity. We argue that planarity is not just violated
in a moderate way but that the violation is actually such that
it cannot possibly be fixed. If arbitrary turn restrictions were
allowed, we could just (i) draw any graph in the plane (for
example the large-girth graphs in [25] or the expander graphs
in [23]), (ii) add a node for each intersection, (iii) apply
left-turn and right-turn restrictions (i.e., apply the supposedly-
existing transformation without violating planarity), (iv) com-
pute a planar distance oracle [24], and (v) store only the
distance labels for the actual nodes of the graph. If the
transformation in step (iii) could be done, the resulting oracle
would contradict known lower bounds.

In our implementation, we connect each node to additional
portals as follows: on any separator path, we deem each
turn-restricted intersection as a portal (assuming that those
intersections are not ubiquitous). The upper bound of O(1/ε)
portals per separator path cannot be guaranteed anymore.
The bound in the implementation is O(1/ε + R), where R is
the number of intersections with turn restrictions on a given
separator path.

B. Directions

Realistic modeling of traffic requires us to consider directed
graphs.1 The existing implementation [16] is for undirected
graphs only and the directed oracle is significantly more in-
volved [24]. Existing methods for directed road networks [5, 6,
10, 21] usually do not have theoretical worst-case bounds close
to [24] (some theoretical results are known [2, 3]). For our
scenario, we integrate the undirected implementation into our
code. While our theoretical results hold for directed networks,
our experimental evaluation is for undirected networks.

C. Reduced Set of Portals on Separator Paths

On the highest level, we cannot use planar-graph algorithms
to efficiently compute portals and distances to portals for
each node. Instead, we propose to relax the approximation
guarantee in a controlled way. We heuristically treat each
separator path (or express way) as in Algorithm 3.

D. Deadline values

In the probability-tail model, the user may specify an arbi-
trary deadline d. As a consequence, the ratio of the smallest
and the largest possible d can be arbitrary large. As argued in
the theoretical sections, this can be controlled for effectively.
In practical implementations, one could also limit the range of
user input values by restricting the deadline values available.

VI. EXPERIMENTS

We evaluate an implementation of our algorithm on a real-
world network dataset. We show that the query time is several
orders of magnitude faster than the previous algorithms, and

1The shortest-path problem for directed graphs is strictly more general. In
a straightforward way, any undirected graph can be represented by a directed
graph with bidirectional edges. For arbitrary directed graphs, even if they
are guaranteed to be sparse, not much is known with respect to shortest-path
queries, while the undirected variant is quite well understood.



Fig. 3. The travel time distribution of two different road segments for 0 ∼ 1 am, 8 ∼ 9 am, and 5 ∼ 6 pm on weekdays.

Algorithm 3: PORTALS(H,Q,m)
Data: a path Q and a parameter m
Result: a set of portals for each v ∈V (H)
SINGLESOURCESHORTESTPATHS(Q) ;
connect dummy source to each q ∈ Q;
computes first portal q0(v) and distance d(v,q0(v)) for
each v ∈V (H);
for qi ∈ Q do

for j ∈ {0,1,2, . . .m−1} do
Q( j)← subset of nodes qi where i = j mod m ;
SINGLESOURCESHORTESTPATHS(Q( j)) ;
dummy source connected to all q ∈ Q( j);
computes another portal q j(v) and distance
d(v,q j(v)) for each v ∈V (H);
if (1+ ε)d(v,q j(v)) > d(v,qi(v))+d(qi(v),q j(v))
for all portals qi(v) added previously then

add portal;
end

end
end

we also show that approximately optimal paths are reasonably
close to optimal paths.

A. Setup

The tests were run on a machine with 2 GB of main memory
and an Intel Xeon CPU 1.86GHz processor.

Our graph represents a city-scale network with 40,000+
nodes and 70,000+ edges. As described in the previous section,
we adapted the worst-case-proven algorithm and tailored it
to fit our real-world scenario. We implemented the distance
oracle for undirected graphs based on the implementation
of [16].

Since our network is mostly bidirectional (meaning that
there are only few one-way streets), our graph could poten-
tially be considered undirected. However, in time-dependent
scenarios, the traffic may still flow in one direction, while a
road may potentially be jammed in the other direction. Using
the following heuristic, we can use the undirected variant of
the distance oracle without significant impact on the path
quality. To compile the different travel time distributions of
bidirectional road segments, we built distance oracles for two
different edge length functions: one with inbound driving time
statistics and one with outbound driving time statistics. The

geometric orientation of an edge with respect to the city center
was used as the reference to indicate which of the two travel
time statistics should be used when constructing the distance
oracle. At query time, for example, if the route query overall
corresponds to a inbound movement, the distance oracles built
based on the inbound statistics are used.

We examined the pre-processing times, query times, and
approximation ratios for different ε values for the two different
models: Specifically, we used ε ∈ {0.1,0.2,0.3,0.4,0.5,1} for
the Mean-Risk model, and ε ∈ {0.5,1} for the Probability-Tail
model.

B. Pre-processing

Depending on the user’s desired accuracy level ε , we find
the values ξ , L, and U (as outlined in the theoretical part).
The sizes of the set K for different values of ε are shown
in Fig. 4 (Left). The pre-processing time depends mostly
on |K | (and therefore on ε). For each value of ε , we
used c ∈ {0,0.5,1, · · · ,6} for the Mean-Risk model, and d ∈
{1.1 ·m∗,1.2 ·m∗, · · · ,2 ·m∗} for the Probability-Tail model,
where m∗ is the minimum expected travel time for a given
origin-destination pair.

1) Computation time: The pre-processing times for differ-
ent ε values are shown in Fig. 4 (Middle). For example, for the
Mean-Risk model, if we set ε = 0.1, 82 different k values are
used. The overall pre-processing time is 5,159 seconds. The
average pre-processing time per oracle is about 63 seconds.

Note that the number of distance oracles to pre-process only
depends on the desired accuracy of the solution paths defined
by ε . It is independent of the users’ other query parameters,
such as origin, destination and the risk-aversion coefficient c in
the Mean-Risk model or the deadline d in the Probability-Tail
model.

2) Data space: Depending on ε , the overall space con-
sumption varies greatly (see Fig. 4 (Right)), mostly due to two
reasons. First, the number of k values increases as the accuracy
is increased (meaning that ε is decreased), see Fig. 4 (Left),
and second, the number of connections in the distance oracle
grows linearly with 1/ε .

C. Path Queries

To measure the query time, we compute stochastic shortest
paths between 1,000 random origin-destination (OD) pairs. To
evaluate the quality and accuracy of the reported paths, we
query 1,000 random OD pairs.



Fig. 4. The number of k values needed for the road network — this figure illustrates the growth of |K | for the mean-risk and the probability tail model with
respect to the user-specified level of accuracy ε (Left), Pre-processing time for each ε (Middle), For each ε value (1/ε on the x–axis), we report the total
storage requirement for all the distance oracles (y–axis) (Right).

Fig. 5. The histogram of the query time for 1,000 random OD-paris. ‘Pruning
algorithm’ refers to Algorithm 1 in [15]. Our new method is faster by several
orders of magnitude. The speed-up is from tens of seconds or several minutes
to tens of or hundreds of microseconds.

1) Query time: The time required to answer a route query
for different values of ε is illustrated in Fig. 5. The query time
decreases as ε increases. We implemented [15, Algorithm 1]
as a comparison to our method in this paper. The query time
results are plotted in Fig. 5 .

2) Approximation quality: We compare the quality of the
path output by our algorithm to the optimal path length,
computed by the algorithm described in [15]. As a quality
measure, we list the approximation ratio, defined as the differ-
ence between the optimal solution (as defined in equations (2)
and (3), respectively) and our solution, divided by the optimal
solution (see Fig. 6). Our worst-case guarantee says that this
ratio can never be larger than the user-specified level of
accuracy ε . Our experimental results show that the ratio is
smaller than ε , and, moreover, the ratio is substantially smaller
than ε . Even for relatively large values such as ε = 1, we
still obtain an approximation ratio less than 0.02. Based on
this experimental result, we suggest using larger values of ε ,
saving both computation time (both pre-processing and query

Fig. 6. The histogram of the absolute performance guarantee (error) for 1,000
random OD-paris. We used c ∈ {0,0.5, · · · ,6} for the Mean-Risk model and
d ∈ {1.1 ·m∗,1.2 ·m∗, · · · ,2 ·m∗} for the Probability-Tail model, where m∗ is
the minimum expected travel time for a given origin-destination pair.

times) and storage (as outlined in the previous section).

D. Path Examples

We developed a web interface that responds to user inputs.
Users can select the origin and destination, as well as the travel
time of the day and the day of the week. The system computes
the stochastic shortest path and displays it on the map. Fig. 1
shows our different solution paths for different deadlines for
the Probability-Tail model with ε = 0.1.

VII. CONCLUSION

We improve upon the state of the art in stochastic path plan-
ning, providing a method that can answer stochastic shortest-
path queries in poly-logarithmic time using a data structure
that occupies space essentially proportional to the size of the
network. Our method has proven worst-case guarantees and it
might be applicable to real-world scenarios.
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